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SUNMARY

A method has been developed and used to obtain theoretical pre-
dictions of the current collected from a collisionless, fully Maxwellian plasma
at rest by an electrically conducting Langmuir probe having spherical or cylind-
rical symmetry. The probe characteristic., or functional relation between current
and probe potential, has been determined for both geometries for probe radii up
to 100 times the Debye shielding distance of the hotter species of charged
particle, for a complete range of ion-to-electron temperature ratios and for
probe potentials from -25 to +25 times the thermal energy of the hotter species.
Each current collection result is computed to a relative accuracy of 0.002 or
better in an average time of approximately two minutes on the IBM 7094.

Maxwellian velocity distributions and finite current collection
are assumed for both ions and electrons. The infinite plasma is replaced by
an outer boundary at a finite radius, beyond which a power-law potential is
specified. The resulting nonlinear system of integral equations is solved by
an iterative numerical scheme which incorporates an extension of the Bernstein
and Rabinowitz method to provide charge densities for ions and electrons. No
a priori separation into sheath and quasi-neutral regions is assumed.

Explicit comparison is made between the results for a completely
Maxwellian plasma and those for a plasma mono-energetic in attracted particles,
as treated by Bernstein and Rabinowitz, Lam, and Chen. It is shown that in
certain cases-, the mono-energetic plasma does not adequately simul e the Max-
wellian plasma.

It is also shown that difficulties encountered by Bernstein and
Rabinowitz in computing the ion current for the cylinder in the zero-ion-
temperature limit are illusory, and that the computations of Chen for this
case do not take into account the fact that the ion temperature acts as a
singular perturbation.

Computed charge density and potential functions are presented
graphically. Computed probe characteristics are presented in graphical and
tabular form. A listing is included of the Fortran programs used to obtain
these results.

iii



\4

TABLE OF CONTENTS

Page

SYMBOLS vi

I. INTRODUCTION 1

II. STATEMENT OF THE PROBLEM 3

III. SCALING PARAMETERS 4

IV. EQUATIONS DESCRIBING THE COLLISIONLESS PLASMA 7

V. SOLUTION SCHEME FOR COLLISIONLESS-BOLTZMANN EQUATIONS 8

VI. CALCULATION OF THE CHARGE DENSITIES 10

VII. SPHERICAL PROBE 11

VIII. ANALYSIS OF PARTICLE ORBITS 14

IX. NON-DIMENSIONAL EQUATIONS - SPHERICAL PROBE 22

X. CYLINDRICAL PROBE 24

XI. NON-DIMENSIONAL EQUATIONS - CYLINDRICAL PROBE 26

XII. THE LIMIT OF ZERO-TEMPERATURE REPELLED PARTICLES 27

XIII. MONO-ENERGETIC ATTRACTED PARTICLES; THE PLASMA APPROXIMATION 30

XIV. ORBITAL-MOTION-LIMITED COLLECTED CURRENT EXPRESSIONS 39

XV. RESULTS AND DISCUSSION - SPHERICAL PROBE

XVI. RESULTS AND DISCUSSION - CYLINDRICAL PROBE 47

XVII. COMPARISON WITH EXPERIMEWTAL WORK AT U.T.I.A.S. 51

XVIII.CNCLUDING REMARKS 52

REFERENCES 54

TABLES 1 - 6f

FIGURES

APPENDIX A: Limits on the Validity of the Collisionless
Boltzmann-Vlasov Equation

APPENIX B: Discussion of the Collisionless Boltzmann Equation

APPENDIX C: Behaviour of the Iterative Solution Method

iv



,APPENDIX D: Integration of the Poisson Equation

APPENDIX E: Expressions for Charge Density and Collected Current in the
Case of a Maxwellian Velocity Distribution

APPENDIX F: Current Collected by a Probe of Large Radius When
Repelled Particles Are at Zero Temperature and
Attracted Particles are Maxwellian

APPENDIX G: Power Series Solution of the Allen, Boyd and Reynolds,.
Equation

APPENDIX H: Operation of Computer Programs

APPENDIX I: Computer Program Listing

APPENDIX J: Sample Output From Computer Programs

I

Vl



SYMBOLS

E energy

e one electronic charge

F force on a particle

f distribution function; density of particles in position-velocity
space

g inverse of number of particles in a Debye cube

g(t) = (4r/2) (1 - erf(t) ) exp(t2 ); function defined in Eq. (E.21)

I collected current for a spherical probe; collected current per
unit length for a cylindrical probe

i = I/I ; nondimensional collected current

nondimensional current defined in Eqs. (13.6)

J angular momentum

k Boltzmann' s constant

M(r) mixing function; Section V

m particle mass

N number density

p momentum

q charge on a particle

r radius

R p probe radius

RB radius of outer boundary
r position vector

temperature

U = ZeO(r) + J 2 /2mr 2 ; effective potential

v velocity

x , Rp/r; ncndimensional inverse radius

Z number of electronic charges on a particle

Z longitudinal cylindrical coordinate
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I
a velocity variable; Section VII

a "varies as"

0= E/kT; nondimensional energy
0* = (-Z./Z+)(E+/kT.); nondimensional energy defined in Eq.(13.7)

e cylindrical coordinate

integral operator; Section V

0electric potential

E permittivity of space

I'D Debye shielding di.stance;=( ckT/q2N) I1/2

p charge density; = ZeN

7= p/po; nondimensional charge density

X = ZeO/kT; nondimensional potential

a = J2/2m Rp2kT; nondimensional square of probe radius

73  = X1; nondimensional probe potential

ir6  = - T+Z/T.Z+; effective temperature ratio

T7 = m+Z./mZ+; effective mass ratio

= r/X.; nondimensional radius used in Sec. XIII

Subscripts

+ for positive ions

for electrons

for positive ions, but referred to electron temperature; defined
in Sq. (9.1ob)

0 at plama potential

do at infinite radius

p at the probe

B at the outer boundary

G concerning locus of extreas of effective potentials

N referring to energy of mono-enerptic ions or corresponding
absorptioa boundary
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N for the N'th iteration; Sections V and VI

net result for ions less result for electrons

r radial

SE at the sheath edge; Section XIII

t transverse

T thermal

vr < 0 referring to inbound particles

Vr > 0 referring to outbound particles

Symbols defined and used in Appendixes only

A,B,C variables used in Appendix E

a,bc,d,e,f variables used in Appendix G

CE  = 0.57721566.... ; Euler's Constant; Eq. (E.53)

Fm(B),HI(,,B), functions defined in Eqs. (E.51), (E.46), and (E.68),
H2(A) respectively

h(t) function used in Appendix F

h,ij,k,m,n integer variables used in Appendices E,F, and G

10 zero-order Bessel function of imaginary argument; Eq. (E-7T)

K constant defined in Eq. (A.7);
variable defined in Eq. (B.55)

LoK 1,K2  functions used in Appendix D

10  zero-order modified Bessel Function of the second kind; 3q.(E.61)

(,AA) two functions defined in Eqs. (3.60) and (3.74)

PqRT variables used in Appendix Z

S distance; Appendix A

3 radial variable; Appendices D,3.

- rj%; Appendix F

t time; Appendix A

t dumny variable; Appendix 7

W quantity defined in Ze. (2.84)
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x~z dummy variablta; Appendix E

Yy functions used in Appendix D

y nondimensional potential, separate definitions in Appei* :6

F and G

b, t , t dS' quantities usd,-nAppendix A

dummy variable;..iiopendices EF

a, aG EGWe 20, quantities used J&Appendix E

,I)K 7)x0

quantity defined ini Eq. (A.l)

(SS') two functions defin,,d in Eqs. (E.32) and (E.87)

functions used in Aypendix F

1 subscript referring to field particales; Appendix A

c~d subscripts referrinigto collisions and deflections,

respectively; Appen& A.
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1. INTRODUCTION

A metLod has been developed and used to calculate the electric
potential and the space charge density near spherically and cylindrically
symmetric electrostatic probes immersed in a hot, rarefied, fully Maxwellian
plasma at rest, and thereby tc, calculate the current collected by such probes
from the surrounding plasma.

An electrostatic or "Languir" probe is a piece of ccnducting
material that is inserted into a plasma or. a mechanical support which provides
electrical connection from the probe t9 external circuitry (Fig. 1). The
probe potential is varied, slowly enough to eliminate transient effects, over
a range that normally includes the plasma potential. The electric current
collected by the probe from the plasma is recorded as a function of probe
potential. The shape of this curve, known as the "probe characteristic". de-
pends on the composition and the thermodynamic state of the plasma, and is
therefore potentially rich in information about the plasma. This
fact has enabled the experimenter to use plasma probes as instruments to mea-
sure the state parameters of plasmas that. exist either in the laboratory or
in nature. F.igure 2 shows the general appearance of a Langmuir probe
characteristic.

Many examples of ionized gases, or plasmas, exist in nature as,
well as in man-made devices. The earth's ionosphere, the material of the sun
and stars, and the interplanetary gas are all naturally occurring plasmas, and
Langmuir probes are frequently carried by spacecraft in order to investigate
their surroundings.

The local disturbances created in the ionosphere by the entire
spacecraft can often be analysed using theories developed for L. uir probes,
since the vehicle itself constitutes a conducting object immersed in a plasma;
in this case there is no external connection to allow current to drain off,
and the spacecraft will arrive at an equilibrium or "floating" potential at which
it collects no net current (Fig. 2). Man-made devices in which plasmas are
produced include experiments in controlled thermonuclear fusion, comunication
devices used in electrical engineering, electric thrusters for space vehicles,
and plasma generators for conversion of chemical into electrical power.

Another important type of device is the experimental chamber,
often called a "plasma tunnel", designed for the study of the properties of
the plasma itself. The study of plasmas in these chambers is in many cases of
vital importance in obtaining the basic information necessary before the
applications listed above can be carried out. One of the most important. types

____ of study carried on in this type of facility has been the development of various
methods, including Langmuir probes. for, measurement of state parameters, or
"plasma diagnostics". The work described herein has been done as part of a com-
bined activity at UTTAS, one aim of which has been to develop and compare the
use of Langmuir probes, microwaves, and electron beams for diagnostic work.
Details of some of the experimental work that has been done using UTIAS plasma
tunnel facilities, closely related to the theoretical investigation of Lang-muir
probes reported here, are contained in Sec. XVII, and also in Refs. 1,2,3,4,
and 19. Specific results obtained here have been used in carrying out experi-
ments described in these reports.
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A central problem in the use of plasma probes has been the ex-
traction of the desired values of the thermodynamic state parameters from the
information given by experimentally measured probe characteristics. Theoretical
work, including that presented here, has centred around the solution of the in-
verse problem: if one has a plasma of given composition and state, what is the
shape of the probe characteristic? Quantitative answers to this question have
been obtained as a result of this research, for a range of plasma conditions of
broad experimental importance.

A plasma probe which is charged to a potential different from
that of the surrounding plasma, will create an electric field which attracts
particles of opposite charge and repels those of like charge. If the probe
potential is large enough, very few of the repelled particles will have
sufficient kinetic energy to reach the probe surface, and a region adjacent to
the probe will contain only attracted particles. The net space charge density
thus created in this region will be of opposite sign to the charge on the probe,
and will tend to prevent electric fields from penetrating into the plasma.
This region of charge imbalance is known as a sheath. Beyond the sheath, the
densities of repelled and attracted charge are very nearly equal, and the
electric field is relatively weak, though still significant.

Any charge imbalance in an ionized plasma sets up electric fields
that tend to limit its extent and neutralize it. It has been shown elsewhere
(Ref. 1) that the sheath thickness is always related to a plasma parameter
known as the Debye shielding distance, which depends on the temperatures and
number densities of the various species of charged particles present. The
ratio of probe radius to Debye distance is therefore one of the factors that
governs the shape of the potential well that surrounds the probe. Since the
flux of attracted particles reaching the probe can be strongly affected by the
shape and extent of this well, the ratio of probe radius to Debye length has a
strong influence on the collected current. Measurements of collected current
will therefore contain information about the Debye lengths of the various
species.

A charged particle that comes within the influence of the probe
is affected in general not only by the macroscopic electric field surrounding
the probe, but also by the scattering effect of encounters with other particles.
There exists, however, a class of situations, of great importance in experiment-
al work, in which a particle will, on the average, traverse a distance equal
to many probe diameters before being appreciably deflected out of its collision-
less trajectory by such events. It is then a good approximation to assume
that all 'particles move only along collisionless trajectories, but their initial
velocity distribution far from the prqbe is the Maxwell equilibrium distribution
that normally exists when collisions dominate. it is this class of situationsthat has been considered here. Limits on the validity of the collisionless

approximation ar~e discussed in Sec. III, and in Appendix A.

The-surface of ' plasma probe is always at a much lower tempera-
tur-e than the plasma. As a result, nearly all eletrons that strike it are
absorbed, and nearly all ions that strike it combine with electrons ftom, the
surface and move off as neutral atoms. These neutrals do not interact with
electric fields and, in the collisionless approximation, are-in eff4ot removed
from the problem.
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At large probe potentials the attracted species strike the probe
with sufficient kinetic energy to dislodge charged particles from the surface.
Those having appropriate charge are repelled into the plasma and show up as a
contribution to the measured probe current (Fig. 2). This phenomenon is called
secondary emission. Another source of secondary current collection appears
when electrons accelerated to high velocities by the field of the probe collide
with neutrals and ionize them to produce extra electrons. Plasma probes are
normally operated at potentials small enough to prevent these effects from
occurring.

The plasma probes that are used in experimental measurements
may have a great variety of shapes. Sipce the usefulness of such a probe to
the experimenter is considerably increased if theoretical predictions of its
characteristics are available, the most useful shapes are usually those possessing
sufficiently high symmetry that the dynamics of particle motion in the electric
fields near the probe are of simplified form. In particular, the cases considered
here are those of a sphere or long cylinder in a stationary plasma, or a long
cylinder in a plasma flowing parallel to the cylinder axis. In these cases,
all particles move in central force fields.

A description of related work on the theoretical prediction of
Langmuir probe characteristics is contained in Sec. V, including the pioneer-
ing work of Bernstein and Rabinowitz (Refs. 5 and 21) and its extensions by Lam
(Refs. 7 and 27) and Chen (Ref. 8), as well as others.

In order to define a mathematical model for the plasma, the
following assumptions have been made:

1. The plasma consists of two species of charged particles, one
positive and one negative. Far from the probe, the net charge density approach-
es zero. Maxwellian velocity distributions are assumed for both species in a
reference frame at rest relative to the probe in the spherical case; at rest
or in uniform motion parallel to the probe axis in the cylindrical case. The
latter generalization is a trivial one, but it suggests that the calculations
for the cylindrical probe may be used to measure the properties of a flowing
plasma if the probe axis is parallel to the flow and if the probe is
sufficiently long that end effects may be neglected. Cylindrical probes are
in fact often used in flowing plasmas because of this analytical advantage
(Refs. 1 to 4).

In many experimental situations, thermal contact between the two
species is weak enough to allow significant temperature differences to exist
between them if one of them acts as an energy source or sink. Therefore, an
arbitrary temperature ratio is allowed in the theoretical model.

2. The plasma is assumed to be sufficiently hot and rarefied that
near encounters between particles are of vanishing importance in comparison
with collective phenoena, and each particle moves undisturbed in a macroscopic
electric field determined by the Poisson equation. The conditions under which
this approximation is valid are discussed in Sec. III and Appendix A.
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3. Annihilation of both species of charged particles is assumed to
occur at the probe surface. In the situation being considered, in which binary
encounters are ignored, re-emitted neutralized particles do not interact signi-
ficantly with the plasma. As Berstein and Rabinowitz (Ref. 5) have pointed out,
their solution method, an extension of which is used here, is capable in principle
of dealing with an arbitrary form of charge emission from the probe surface.
This method could therefore be used to compute the large potential ends of the
probe characteristics if an appropriate model for bombardment-induced secondary
charge emission were provided. Such a calculation is beyond the scope of the
present work.

4. Finite collection by the probe of both ions and electrons is
allowed to occur. In combination with the assumption of Maxwellian velocity
distributions for both species, this provision permits the entire probe
characteristic to be obtained, in contrast with previous treatments (Refs. 5 to
8) which were applicable only to restricted ranges of probe potentials.

5. No magnetic fields are assumed present.

6. A steady state is assumed to exist.

7. All particle velocities are assumed to be much smaller than the
speed of light.

8. In order to define a solution scheme, the infinite plasma surround-
ing the probe is replaced by a surface, concentric with the probe, at a finite
radius. A linear relation between the electric potential and its radial
derivative is assumed at this boundary, corresponding to a potential which varies
as a specified negative power of radius beyond. Charged particles emitted in-
ward from this boundary possess velocity distributions corresponding to particles
Maxwellian at infinite radius, but disturbed by the presence of the given
power-law potential.

1 9. Trapped orbits, if any, are assumed to be unpopulated. The con-
ditions required for the existence of these orbits, which are defined as
bounded orbits that do not strike the probe, are discussed in Sec. VIII, to-
gether with the resulting implications for the usefulness of results calcula-
ted on the basis of this assumption.

III. SCALING PARAM .ERS

The net current Inet collected from a plasma at rest by a probe
of radius Rp is a function of the following quantities:

i) The ion and electron temperatures T+ and T.. We define refer-
ence energies ET. = kT and 3T. = kT. where k is Boltzmann's constant.+ +4

ii) The ion and electron masses m+ and m..

iii) The ion and electron charges q+ a Z+e and q. a Ze where e is
one electronic charge and Z is the number of electronic charges per particle.

iv) The number density at infinity of one of the two species, say
+ N0 is not an independent quantity because of the plasm neutrality condition:

, ,, , I II I I II+



N0+ q + N. q 0 (3.1)

v) The probe radius R and probe potential 0, the latter defined
relative to the potential of the plasma far from the probe.

vi) The permittivity of space rt

The complete family of characteristics for either the spherical
or the cylindrical probe is therefore a functional relation connecting the 11
quantities Inet, ET+) ET. , m+, m ., q+) q_) NOQ+, R p, 0p and F_ .

Since each of these quantities is expressible in terms of the
four dimensions mass, length, time, and charge, there exist seven linearly
independent dimensionless quantities such that the solution of the problem is
a relation among them. These quantities may be found by inspection. The proof
of the foregoing statements may be found in standard works on dimensional
analysis, such as Ref. 9.

The complete set of characteristics for either the spherical or
the cylindrical probe is therefore of the form F (inet, , , 714) r5 g+)=0,
where these quantities are defined, by inspection, as follows:

net = I0t(I+)

where (I+)0 is the current of ions that strikes the probe when it is at plasma
potential, i.e., the current due to the -random thermal ion motion in the ab-
sence of electric fields, which for a spherical probe, is given by:

(1+)0 -Z + R 2 (8r kT+/m+) , and for

unit length of a cylindrical probe is given by:

(I+)o = Z+e I.+ Rp (2 kT+/m+) ;

- ET+/ET - T+/T -

72 m+/m. ;

r 3 -Z + e kT + Xp+
3 +pV~ X+

r14 - R(Z 2  .j/kT+) R- + +A

T 5 a q "q = Z+/Z.
9+.a 16+-l ¢ k+2 3+) -3/2

The quantities inth and W3ma be tholht of as the noKmnaiopal current and
nondimensional probe potetial. The symbol AD =SCk/Z0 ° 2 16 )I denotes the



Debye shielding distance of a species o\ charged particle in the plasma, There-
fore 7r4 is'the ratio of probe radius tco te ion De.y ditneI hev-eo
g+ represents the inverse of the number of ions in the volume AD3. The quan-
tities Ys. and Xp are nondimensional variahies used later in the text., in
particular in Set. IX. Their appearance in Eqs. (3.2) constitutes a defini-
tion of them.

It has been shown by Rostoker and Rosenbiuth (Ref.l0) that in the
limt s g-~0 for each species in '~he plasma, the 1.iouville equati n governing

the particle dynamics reduces to a form known as the Vlasov equation, a
collisionless-Boltzmann equation in which the force term is obtained from the
solution of the Poisson equation.

The limit g -*0 is the limit of' a hot, rarefied plasma;
&~T 3 -+0. It is in this limit that near encounters between charged particles
become of negligible Lmportance in compa.risoni with coll-,ective phenomena. For
any finite value of g, a particle can or, the average, traverse only a certain
distance in the plasma before be-ing scattered out of its trajectory by near
encounters. This fact sets an uppDer limit on the probe size for which results
obtainable from the Vle-sov equati.3n wil.-l apply in any given case; in other words,
it determines a Knudsen numb:-er, or ratic of rean free path to probe dimension,
which is a functicn of Pp/AL and g 'Appendix A,,

By inspection of the ecuatiorns folr the system in their dimension-
less form (sections .!_X and 17), it \.an be sh,-wn, that the ratio 7r = m4M_

enters into the computat.-onal scheme only when the net -urrent is calculated.
This ratio may therefore remain unspecified when the ion and electron currents
are computed separately.

It car. also k'e slaown that the parameters 7r, = TJ4 T and
7r5 =Z+/Z-. occur only as a utetin the equations, except in'the equation
f'Cr net Icurrent. Thberefore ilk is po)ssible tc treat these as one quantity for
computational purpo~ses. We acc.ordingly define a new dimensionless parameter
as follows:

711 (3-3)

We therefo're havr., for either the ion or the electro.r current in
the Vlasov limit:

UsuallY, Z,~a = 1 and so that vT6 becomes the ion to
electron temperature ratio T,,./T.. For this reason, we will caLL vT6 the
"effective temperature ratio",, bearing in mi±nd that "he results of the cal-
culations ' which are presented as fun'tions of~ T*/T., may be applied to the
case of multip.Ly charged ions by scaling this quantity.

Sin.We the mass rativ iT2 may be _left unspecified until net
currents are calculated, no distinctioni exists betet.fl ions and electrons in
formulating a scheme for awlulating i+, or i_. separately. The nondimernsional
ion current ^.ollected by a probe which is. fcr example, ior attracting, with
given ratios of pr~oe potential to. ior. energy., ion to electron effective temipera-
ture, and probe radius to ion Debye lengths is equal to the nondimenalonal
electron current collicted hy ar electron-attracting probe with the same ratios



of probe potential to electron energy, electron to ion effective temperature,
and probe radius to electron Debye length. It is therefore possible to speak of
the "attracted" or the "repelled" species without further identifying them.

Because the roles of ions and electrons can be interchanged in
this manner, a complete set of values of i(w6, Xp., Y+) can be used to provide
values of both i+ and i., and thereby to obtain the complete set of probe
characteristics for a given ion to electron mass ratio. Since the relation
between inet and Xp (or X ) constitutes a probe characteristic, the solution
of the problem for either t9e spherical or the cylindrical probe isa two-
parameter family of characteristic curves.

IV. EQUATIONS DESCRIBING THE COLLISIONLESS PLASMA

The system of equations to be solved is as follows (Ref. 5).
Let r be the position vector in physical space and R be its canonically con-
jugate momentum vector (Ref. 11). Let f+r,2 ) and f..(r, j) be the distribu-
tion functions in position-momentum space for ions and electrons. Let v be the
velocity vector and t be time. Let 1+ and F_ be the forces exerted by the
electric field on ions and electrons. Then the collisionless-Boltzmann
equations for a steady-state situation are:

Df+ 6f + 6f+
-f a . V + 1+ 0 (4.1)-- - . -+ -o

Dt 6r

Df 6f af
--Z M - . v+ . F. 0
Dt 6r 4 m

The content of these equations is that the distribution functions
f+ and f_ are constant along particle trajectories in a space of canonical
coordinates (Appendix B).

The electric forces on the ions and electrons are:

_r Z+ • .

(4.2)
L "4",. e-

Let p be the net density of electric charge, and let N+ and N.
be the number densities of ions add electrons. Then Poisson's equation is:

V * P/ (4.3)

where
p. e(+ + + Z..) (4.4)
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Finally: N+ (r) =J f (r,v) d3 v

N_ (r) - f (r,v) d3  .

V. SOLUTION SCHEM FOR COLLISIOMESS-BOLTZMANN EQUATIONS

The most difficult problem in finding a solution scheme for
Eqs. (4.1) to (4.5) has been to obtain methods of calculating the number
density 1(r) of the attracted species as P. functional of potential O(r).

In the case of a spherical probe immersed in a stationary plasma,
Allen, Boyd, and Reynolds (Ref. 6) simplified the problem by assuming that
the attracted particles had no thermal motion and fell radially inward toward
the probe under the influence of the electric field. They also simplified the
number density calculation for repelled particles by assuming that the probe was
at a large enough potential to prevent any of them from reaching it. By means
of this assumption and by invoking the continuity equation for the attracted
particles, they obtained an ordinary differential equation which they were able
to integrate numerically to give potential as a function of radius for any given
value of collected current.

Bernstein and Rabinowitz (Refs. 5, 21) developed a more general
scheme capable in principle of finding N(r) as a functional of 0(r) for an
arbitrary velocity distribution specified far from the probe, under one re-
striction; namely, that the situation be one possessing sufficiently high
symmetry thbt there exist constants of the particle motion equal in number to
the velocity coordinates of the particles. This requirement is satisfied if
the particles move in a central force field. They then approximated the velocity
distribution for attracted particles by a mono-energetic one in which all such
particles far from the probe moved with the same spsed, all directions of
motion being equally probable. This assumption, toegether with that of zero
collection of repelled particles, also gave them a differential equation,
which they integrated numerically.

More recently, Lam (Ref. 7) has carried out an asymptotic
analysis on the mono-energetic Bernstein and Rabinowitz differential equation
in the limit Rp >> \D, and has obtained probe characteristics valid in that
limit, in the cases of very large and very small probe potentials. He has
also obtained the leading correction term for expressing mono-energetic
current collection as a power series in kD/p (Ref. 27)

The present treatment, in contrast with these previous ones,
assumes a full poly-energetic, Mawellian distribution for the attracted as well
as for the repelled species. As a result, the charge density at any given
radius can be shown to depend not only on the local value of the potential at
that radius but on the value of the potential everywhere in the vicinity of
the probe (Appendix 2). The system Is 'ierefore not reducible to a
differential equation, and a nonlinear system of integral equations results
which has been solved numerically on the IBM 7094 digital cmputer at the
University of Toronto. This more general procedure is capable of dealing
with the mono-energetic assumption as a special case, andtexplicit compari-
son has been made in order to evaluate the errors introduced by this approxi-
mation.
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The iterative procedure for the numerical solution of the equa-
tions is as follows. An initial trial function is assumed for the net charge
density. Poisson's equation is integrated to provide the electric potential
and its first two radial derivatives, as functions of radius. Using this
information, the ion and electron collected currents and charge densities are
calculated. The resulting net charge density function is mixed with the pre-
vious net charge density to provide a closer approximation to the solution.
This process is repeated until sufficient accuracy is obtained.

The process of calculating the ion and electron charge densities
from a given net density and subtracting them to give a new net density defines
a non-linear integral operator ' which acts on the N'th iterate PN(r) to give
the next iterate PN+ (r). The solution to the system is a function which
satisfies p(r) = Optr). In general, the sequence of functions generated by
the operator 0 diverges by overshooting the true solution and oscillating about
it with increasing amplitude (Appendix C). We therefore define a mixing func-
tion M(r) which has the property 0 < M(r) < 1 for any r. We then define a new
Iterative scheme as follows:

P N(+r) = M(r)0 PN(r) + (1 - M(r) ) pN(r) (5.1)

Inspection of this equation shows that if PN+I(r) = P (r), then
PN(r) = O (r) as required for a correct solution. An opti form lor the
function lWr) is found by comlatational experiment.

An iterative procedure which resembles in same respects the one
developed here, has been developed by Uamza and Richley (Ref. 22) for use in a
numerical solution of the Boltzmann-Vlasov equations in a multi-electrode, two
dimensional ion-thruster geometry. In this procedure, toro charge density is
initially assumed and the two-dimensional Laplace equation is solved numercally
for the given boundary conditions. A steady, parallel bean of ions is then
introduced. By numerically integrating ion trajectories, the resulting
charge density is calculated; the Poisson equation is then solved to find a new
potential configuration. If this new potential is then used as a basis for
another iteration, and the procedure is repeated a number of tms, it is found
to diverge; convergence has been obtained by mixing each successie potential
with the initial potential obtained by solving the Laplace equatiom. The mixing
function is called a "suppression factor". There is one important ditTerence
between the procedure used here and that of Ref. 26: no solution of the Laplace
equation is used here as part of a mixing scheme because such a potential at
large radii has the wrong dependence on radius (Table 2) and would cause un-
acceptably large perturbatinat in charge densities.

A number of approaches to the problem of obtaining probe
characteristics for a completely Wwvellian plasm have recently been published.
,all (Ref.. 23, 24, and 25) has described a number of steps leading toward the
develoment of a coutation scheme based on an assmed f*rM far the locus of
extrema in energy vs angular somentumi space (Sec. V n); be alprWomts the
locus of extrema by a pair of line sepents and then iterates to rind the best
poseible positions for these lines according to criteria ich he has derived.
Based on this method, he has obtained and r displayed the first two
terms in an mnsion for the ion current collected by a cylindrical probe
in a Haiwellian plasma, valid in the limit of am lo-to-electron temparature
ratio (et. 27).
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Maskalenko (Ref. 26) has formulated the general problem for the
cylindrical probe, including expressions for charge density and flux for the
Maxwellian case. He then specializes to the limiting case of large Rp/'D
and outlines a computation scheme for this limit. At this date he has not yet
published any computed results.

Walker (Ref. 28) has formulated the Maxwellian problem for an ion-
attracting spherical probe at sufficiently large potential to assume negligible
electron collection . He has published a single-parameter family of probe
characteristics which depend only on Rp/XD. and have apparently been done for
an ion-to-electron temperature ratio of 1, although this point has not been
specified. Few details are given concerning the computation scheme, which is
said to involve no iterative procedure, but only an inward integration from a
set of arbitrarily chosen conditions at some relatively large radius; as in
the mono-energetic solutions of Bernstein and Rabinowitz (Refs. 5 and 21) the
probe radius is left unspecified. From the point of view of this investigation,
it is difficult to see how this can be done without introducing some unspecified
approximation, since unlike the mono-energetic case, the charge density at any
radius in the Naxwellian case depends on the form of the potential over a
continuous range, in general, of both smaller and larger radii (Appendix E).
Furthermore, in the Maxwellian case, unlike the mono-energetic case, there is
no range of situations in which the specific value of the probe radius can be
ignored, because there are always some energy levels in the distribution function
for which the probe does not lie "hidden" inside the corresponding absorption
radii (Sec. VIII).

Reference 29 contains analytic approximations constructed from
the probe characteristics of Ref. 28 by a curve-fitting process.

Preliminary results of the computations described in the present
treatment have been reported in Refs. 2 and 20.

VI. CALCUA3ION OF-TH CRON DENSITIES

The solution of Eqs. (4.1) uses an extension of the method of
Bernstein and Rabinowitz (Ref. 5). In situations possessing sufficiently high
symmetry, such as those considered here, all particles move in a central force
field, and there exist constants of the motion equal in number to the velocity
coordinates of the particles. In this case, the integration over velocity space
in Eqs. (4.5) can be transformed into an integration over the ranges of these
constants. Velocity coordinates are thus eliminated from the problem and
particle trajectories need not be calculated explicitly in order to find X+ and
. for a given potential function 0 . The effect of the potential on the

particle densities maes itself felt in the existence of forbidden regions
in the phase space defined by the constaits of the motion. In these regions,
no particles can exist and the distribution functions vanish. This method
is discussed in detail beginning with Sec. VII.

The elimination of explicit trajectory calculations in this
manner is of crucial importance in formulating a scheme for calculating charge
densities. A situation possessing less symetry, and therefore requiring such
,trajectory calculations, for example, a sphere in a flowing Maxvellian plamM,
would Involve numerical trajectory computations of such mantude as to appear
prohibitive. This is particularly true for an iterative calculation such as
this one, in which 0 itself is only one member of a sequence of functions oy
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which have the true solution as their limit, and N+ and N. must be determined
anew during each iteration.

Furthermore each complete set of iterations defines a solution
for only one value of nondin'ensional probe potential and one value of each non-
dimensional plasma parameter (Eq. 3.4); in a flowing plasma, the flow velocity
itself would require the inclusion of additional parameters to describe a given
case.

Vil. SPHERICAL PROBE

The velocity of a particle passing through any point in a spheri-
cal coordinate system may be resolved into a radial component vr and two trans-
verse components which specify the projection of the velocity vector in a plane
perpendicular to the radius. If we take polar coordinates t and a in this
plane, then we obtain for either ion or electron number density, from Eq. (4.5):

= f f(C_,Z)dvr dvt vt d a (7.1)

For all situations to be considered, the distribution function
is isotropicr at infinity and all electric fields are radial. Hence f depends
only on r. vr, and vt, and not on C. We may immediately integrate Eq.(7.1)
over a to obtain:

N(r) j Vr= f(r,vr, Vt) dvr d(vt2 ) (7.2)

v,=O v -oo

The appropriate constants of the motion are the total energy E
and angular mcmentum J of a charged particle:

S = Zet(r) ,M- (v 2 + Vt7.)

j2= mP r2 v t 
(7.3)

The inverse relationships are:

V + [2/n (E- Ze(-) j2 /m2 r2 (.
(7.4)

vt2. J2/M2 r2

The integration over velocity space in Sq. (7.2) my now be
transformed into an integration over 2 and

a J- I ) - 2 ZdJ 75

The limits on the integration over I represent the fact that E
goes from 0 to s once for positive values of vr and again for negative values
of Vr . This point is made clearer by the fol!UAg discussion.
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At a given radius in position space, the integration along vr
- must be considered separately for iWoming particles (vrc 0) and outgoing par-

ticles (vr & 0). In any central force field, the incoming and outgoing halves
of a particle trajectory are mirror images of each other. Tbarefore, in any
region of the (j2 , E) plane in which an outgoing particle may exist, *.,
which represents a particle trajectory that does not strike the probe, the
particle must be counted twice at t radius r, since it appears once inbound
and once outbQund. Therefore,

f(E, J2) >O=f(E, J2) r <0 and f =2fr <0.

In any region of (J 2 , E) space which represents trajectories
that strike the probe no outbound particles exist at the radius r. We ten
have fv>o = 0 and f = fvr<o. Finally, there exist regions of (J2, E) space
corresponding to particles which do not reach the radius r because zhey have
turned back at larger radii. In thede regions, f = 0. The integration-may
therefore be taken over incoming particles only, with f = fvr<O, where I = 0,
1, or 2.

We now examine a sequence of particle trajectories which corre-
spond to a fixed value '6f E and-increasing values of j2 . The trajectories be-
longing to such a sequence cross any given radius'r in an increasingly tan-
gential direction, as can be shown by inspection of Eq. (7.4). The distance
of closest approach to the origin r -O for particles which come from in-
finity will always increase with increasing j2 . Therefore there will always
be a largest angular momentum J1 for which particles still strike the probe.
(This does not always correspond to grazing incidence atthe-probe surfelt;
see for example the set of particle trajectories shown in Fig. 4d.) For all
values of j2 from 0 to J12, it folloas that K = 1.

Similarly, for a fixed E, there will always be a largest 4,.gu-
lar momentum J2 > J1 for which particles still penetrate inward as far as any
given radius r; at this radius, a particle with energy E asd angular momentum
greater than J2 is forbidden. For values of j2 between J1= and 2 , we then
have K 2; for larger values of J

2 , we have K- 0.

We evaluate the Jacobian in Eq. (7.5) to obtain:

.. f ,0 J2- "
N~r) ~ j E=OCJ ~2...K(Esj 2)fv,,"{< J/I2n(E-ZeO(r))-J2/m2r2fac,, 2 J . 0' L

m"rm ' 2=° .. (7.6)

If the velocity dist utIon does not depend on J. as is the
case for all distributions to be co'dered, then f = f(E) and the integratiw
over J may be immediately carried out over all ranges of J2 in which the value
of K does not change. The result will b' the sum of a number of integrated
terms, one for each end of each of the 1,s For compactness of notation,
we define Kn as the value of K correspoad to all values of J between Jn-l
and Jn where n = 1 or 2. For convenience t .- Io define a zero value of
angular momentum Jo. We note that by the de: Ation of 1; we have K=1 and
K2 a 2. We then obtain:
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N(r) = - 2J jO{2m(E-Zeo(r)) - 2/r2 (7.7)
J1 n=l Jn~i(E,r)

The value J is both the lower limit of the region in which
K = K2 = 2, and the upper limit of the region in which K = K1 = 1. Accordingly,
the summation indicated in Eq. (7.-7) may be condensed by combining the corre-
sponding pair of terms. In order to preserve compactness of notation, we de-
fine quantities K0 and K , which are both zero, and then define the quantity
Qn = KnKn; we then hae Q1  -1, Q2 = -1, and Q3 2. Equation (7.7) then

reduces to:

N(r) - dfvro(E) Qn{2m(EZeo(r) 2- (7.8)

0 n=l

where
0=J- J 1 (E) <J 2 (E,r)

This formal way of expressing the number density NI(r) will prove

to be of advantage later in calculating specific Values of this quantity. In a
number of situations, it will be found that some or all of the quantities Jo),_
J , and J2 will coincide in certain ranges of E, and the summation in Eq. (7.8)
Wll consist of fewer than'ithe indicated three terms in these same ranges of E.
These points will become clear later (Appendix E).

We see that the integration over velocity space in Eq. (7.1)
has been reducedto the calculation of a set of line integrals over paths
J2(E) in the (j2, S) plane. These paths -are characterized- by thfe fact that K
takes on different values on either side of them. It is therefore necessary
to consider within what regions of the (J2 ,E) plane an incoming particle will
strike the probe, within what regions it 'flies by the probe and within what
regions its existence at a given radius is forbidden. This question is
stoied in See. VIII.

--The current of a given specie: of particle in the plasma ,

collected by the probe, is given by:.,

= [ 472Zefv0 (r,v) Ir] d3v (7.9)

r=Rp

This integration may -be transformed in a manner similar to

Eq. C7.5), into an integration over (J2,E) space. Since we intend to study
only situations in which fVrMO does not depend on j2 , the result is:

42 , + Tm Ze 4 fvr(o (E) j12 (E) dE (7.10)

The quantity of interest for experimental measurements is the
net current Inet, which may be obtained as fllows, after Eq. (7.10) has been
evaluated for each of the species of charged particles:
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Inet  11+ 1 = - (711)

In this study the velocity distribution at infinity for each
species is taken as a Maxwelliandistribution function:

-3/2 -E/kT~f(E) 7 - e ( m )/

2kT e (7.12)

For purposes of comparison with work by other authors who employ-
ed mono-energetic distributions for the attracted species (Sec. V), we define a
mono-energetic velocity distribution corresponding to particle's which have no pre-
ferred direction of motion and which each possess an equal amount of total ene rgy
which we call ENI. If 6(x) is the well-known Dirac delta function, then this
distribution is:

f(E) m2 N b(E EM)(73)

4-ff (2m EM) F

An energy EMq must now be chosen which will cause the mono-energetic
distribution to best approximate the Maxwellian distribution which corresponds to
_the_ temperature T. In order to do this, we choose the -value of EM which will
cause a low-order moment of the, mono-energeti distribution t? coincide with
the same moment of the Maxwellian. It has been suggested by 'hen (Ref. 8) that
the most suitable moment is the random flux,; this equates the-current collected
by a probe at Dlasma potential. Equating this for both distributions, we obtain,
for the spherical probe:

kT (7.14)

VIII. ANALYSIS OF PARTICLE ORBITS

Itf we eliminate vt from Eqs. (7.3), we obtain:

- (Ze(r) + J2/2m-r2 ) = m vr2/2 (8.1)
he ter:m g2/2mm. " in this equation expresses the effect of angular momentiun of

circiunferenitial. motion of a particle on its radial motion. The form of this
equation shows that this term is in effect a repulsive contribution to the
potent.: 1 energy. Accordii)gly, we define as follows an effective otential
energy U for the motion of a particle possessing angular momentum I J.

U = ZeO(r) + J2/2znr 2  (8.2)

A particle with a particular J2 and E can reach a particular r
only if E - U(r) > 0. The relation E = U defines a straight line in the (J-,E)
plane, having a pooitive slope equal to 1/2mr2  . Below this line, particles
cannot exist. This line will therefore be called the "cutoff boundary" corre-
sponding to the radius r.
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It is also possible for a particle which is not prohibited from
q particular r by the E < U condition to be prevented from penetrating inward
to this radius by a potential barrier at a larger radius. In other words, a
particle corresponding to the values E and j2 will exist at a particular r if
and only if E> U(r') for all r' > r.

Any particle able to exist at the probe surface will be absorbed
by the probe. Therefore, unless potential barriers exist at larger radii, all
particles will be absorbed by the probe above the line:

E = Ze p + J2 /2m p2 (8.3)

The general appearance of the (j2, E) plane is shown in Fig. 3a
for an attracting probe (Ze 0 < 0 for the species under consideration) and in
Fig. 3b for a repelling probe (Ze kp > 0), unless potential barriers intervene.

These diagrams are drawn for some specific radius r. They show
the location of the cutoff boundary conresponding to this radius; they also
show the location of the line correspodding to Eq. (8.3), which represents the
cutoff boundary corresponding to r = Rp. Values of the integer Q defined in
Sec. VII, corresponding to these boundaries and to all other boundaries across
which the integer K (Sec. VII) changes, are also shown. The quantities 0 and
0 shown in these diagrams are nondimensional equivalents of E and j 2 defined
in Sec. IX, For an attracting probe, it can be shown that potential barriers
do not intervene to alter these diagrams if potential falls off with increasing
radius sufficiently slowly;for a repelling probe, the necessary condition is
that the potential be monotonically decreasing. These statements are discussed
in greater detail later in this section.

It is now necessary to examine the influence of potential
barriers on these diagrams.

Figures 4a and 4b show families of curv Is of effective potential
U as a function of r, sketched for various values of J , corresponding to
attractive potentials ZeO(r) which decay more rapidly or more slowly than an
inverse square potential, respectively. Examination of the expression for U
(Eq. 8.2) shows that if O(r) decreases more steeply with increasing r than an
inverse square law then the term j2/2mr2 will dominate at large enough radii
and the term Zeo(r) will dominate at small radii. Since J /2mr2>0 for any non-
zero value of J, and ZeO(r)<0 for an attractive potential, the effective po-
tential will have a maximum at some value of r. For a larger value of J ,

this maximum will occur at a smaller radius. If$(r) ecreases more slowly
than an inverse square potential, then the term J /2mr will dominate at
smaller radii, and the term ZeO(r) will dominate at larger radii, producing a
minimum in U(r).

As Fig. 4a illustrates, if a maximum occurs in a curve of effective
potential corresponding to a particular value of j 2 all jarticles coming from
infinity whose trajectories correspond to that value of J and to energies E
less than the value of U at the maximum, are prevented from penetrating inward
past the maximum and therefore do not reach the probe. Therefore, if an
attractive potential O(r) is a steeper function of r than an inverse square,
potential barriers exist which decrease the current collected by the probe.
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We now examine, with reference to Fig. 4a, a sequence of tra-
jectories corresponding to some given energy E, and to increasing values of J2.
As j2 is increased, the corresponding curve U(r) moves upward until the maxi-
mum in this curve becomes equal to E. No trajectories corresponding to larger
J2 can reach the probe, or even penetrate inward as far as the radius at which
the maximum of U(r) is just equal to E; we will call this radius rM(E). We
also see that any particle with energy E that does penetrate inward to this
radius must have an angular momentum small enough that it will reach the probe
and be absorbed by it; we therefore call rM(E) the absorption boundary
corresponding to the energy E. Figure 4d shows such a sequence of trajectories,
and also shows the location of rM(E). As E is increased, rM(E) is decreased,
until for sufficiently large E, rM(E) = Rp. For larger values of E there
exist no corresponding absorption radii, and the maximum value of P for which
such particles still strike the probe is given by Eq. (8.3). A sequence of
trajectories corresponding to such a value of E, and increasing values of 2
is shown in Fig. 4c. For such a sequence of trajectories, i.e. when no absorp-
tion radius rM(E) exists for the energy E, current collection is said to be
"orbital-motion-limited" at the energy E.

The orbital-motion-limited current represents the maximum
current of particles of energy E that can be collected for a given probe
potential and given distribution of such particles at infinity, in the
collisionless case. This is true because the presence of potential barriers
can only decrease the number of particles of this energy which reach the probe.
If the current is orbital-motion-limited for all values of E corresponding to
particles which come from infinity, then it is simply described as orbital-
motion-limited. This terminology has been used by previous authors, though it
may be considered as not very illuminating.

We now examine a sequence of cases in which the probe potential
and all other nondimensional parameters are held constant except that the ratio
of probe radius to Debye length is increased. Since the thickness of the sheath
adjacent to the probe is always of the order of a few Debye lengths (Sections
XV and XVI) the potential well surrounding the probe will contract and steepen,
and, in general, an increasing number of particles will be prevented by potential
barriers from reaching the probe, so that the collected current will decrease.
Since there is always a largest energy E for which there still exits outside
the probe an absorption radius r (E), we expect that this largest 3, which we
call EH, will increase as RP/ D  s increased.

We may now infer some differences which we may expect to see in
the collected current as RPAD is increased, depending on whether the distribu-
tion of attracted particles is Maxwellian or mono-energetic. First, the current
collection for mono-energetic particles need only be orbital-motion-limited at
one energy in order to be completely orbital-motion-limited, so we expect
current collection in this case to remain orbital-motion-limited for larger
values of RpPD. Also, we may expect current collection in this case to de-
crease more suddenly once it is no longer orbital-motion-limited, since in the
Maxwellian case current collection is an integral over contributions from many
energies, each of which will cease to be orbital-motion-limited at a different
value of RSD . Both of these expectations are borne out in the computed re-
sults (Sections XV and XVI); in fact, in the mono-energetic case, curves of
current collection vs Rp/kD actually have a discontinuous slope at the value
at which current becomes no longer orbital-motion-limited.
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Another type of orbit which exists when absorption radii are pre-

sent is shown in Fig. 4e; this diagram shows an orbit corresponding to the same
values of J2 and E as a particle coming from infinity, but which connects with
it nowhere, and originates and ends at the probe surface. This orbit lies
entirely inside rM(E) whereas the other orbit lies entirely outside rM(E).
Such an orbit can only be populated by emission from the probe surface, which
we have assumed does not occur, or momentarily, by a collision; the population
of such orbits is a negligible problem in comparison with the more serious one
of trapped orbits.

Such trapped orbits exist when minima of effective potential
occur, such as those shown in Fig. 4b; an example of a trapped orbit is shown
in Fig. 4f. Trapped orbits and their implications are discussed in detail later
in this section.

A more complicated situation than those of Figs. 4a and 4b is

shown in Fig. 5a, which shows a family of effective potential curves, corre-
sponding to various values of J2, for a case in which the dependence of O(r)
on r is steeper than an inverse square at some radii, and shallower at others.
In this case, trapped orbits, orbits unpopulated because they originate at
the probe, and potential barriers, are all present. This situation is typical
of potential configurations actually found to exist in many cases; variations
of this situation also occur, as discussed later in this section. We also
note that in the situation shown, the smallest absorption radius that. is present
&.oes not lie immediately adjacent to the probe surface but is at some distance
from it.

We now proceed to derive a more quantitative manner of dealing
with the effects of potential barriers; this formulation will be essential in

constructing a calculation scheme.

Since V2= - p/e and p is finite everywhere, V is continuous
everywhere. Therefore, 0 is a continuous, smooth function of r. By its de-
finition, Eq. (8.2), U is therefore a continuous, smooth function of r. Since
0 -40 as r -#o, U -+0 also. We also have B 2 0 for any particle coming in
from infinity. Therefore, if U(r)S B and U(r')> B for some r' > r, i.e. if the
corresponding orbit is unpopulated at r, then U must have a maximum at some
radius r"larger than r. The maximal value U(r") must be greater than E.

In Figs. 4a, 4b, and 5a, all points (r", U(r") ), where a maxi-
mum or a minimum occurs in a curve of effective potential versus radius, have
been joined to generate a curve called a locus of extrema in the (r, U) plane.
The orbit corresponding to a given j2 and Z will be unpopulated at the radius
r if the locus of extrema attains a value of U greater than 3, at the point
where it crosses the curve U(r) corresponding to J2 , for any r' greater
than r.

The locus of extrema of the curves U(r) is therefore of primary
imporantance in the analysis of particle orbits and the determination of Jl(Z3
and Ji(Er). Each point on this locus of extrema crosses a specific curve of

effective potential, corresponding to a specific value of A2 . Furthermore,
it crosses at a specific value of U which corresponds to a specific energy
level B - U. Each point on this locus of extrema therefore corresponds to a
particular J2 and B as well as a particular r; therefore, for a ;iven potential
function O(r), the locus of extrema lefines a curve in the (J2 ,) plane having
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r as its parameter. It will be shown below that this curve is a well-behaved
function of 0 and dO/dr and always has a positive slope which decreases as r
increases. It may, however, contain one or more cusps.

The foregoing statements may now be given a geometrical inter-
pretation in the (J2,E) plane; namely, any point in this plane will be unpopu-
lated at a radius r if any portion of the locus of extrema corresponding to
radii greater than r passes above it, i.e., attains a greater E for the same
value of J2 .

The defining condition for the locus of extrema is

0

If we define the subscript G as referring to the locus of ex-
trema, we obtain:

1G2 =mr3 Ze- (8.4)

Substituting this risult in the relation:

E = ZeO(r) + J2/2nr2  (8.5)

we obtain: 0weobai:EG=Z e C(r) + z_) "4 (8.6)

If Eq. (8.5) is differentiated with respect to r and the result-
ing equation is solved together with Eq. (8.5) to obtain expressions for j2 and
E, these expressions are identical with Eqs. (8.4) and (8.6). The procedure
just described is the standard technique for obtaining the parametric form of
the curve which is the envelope of a family of straight lines whose generating
parameter is r. This means that the curve (J 2(r), ERG(r ) is the envelope of
all the straight lines represented by Eq. (8.5) in the (J , E) plane. The locus
of extrema is therefore tangent to the straight line given by Eq. (8.5) at the
point on the locus corresponding to the conditions at r. The slope of the
locus of extrema must therefore decrease toward zero as r increases.

It is now possible to draw the (J2 ,Z) diagram corresponding to
Fig. 5a. This diagram is shown in Fig. 5b. The integration paths Jn (I) re-
?uired to integrate Eqs. (7.8) and (7.10) or their cylindrical analogues Eqs.
10.6) and (10.8) can be seen on this diagram. It is instructive to trace in

detail these integration paths, in order to obtain a clear picture of what is
involved in the integration of these expressions. The integration path j 2(Z)
corresponds in this diagram to the line that is labeled AB; the paths Jl ()
and J22(s) correspond to the loci labeled CI and CELG, respectively. At
larger values of r, the point of tangency of the cutoff boundary (8.5) slides
along the locus of extrema. The path J2 W(i) must be modified qualitatively at
these larger radii. Figures 6& to 6c show the resulting appearance of th,
(J 2 ,Z) diagram for three successively larger values of r. In FJ. 6a, J2 1(9)
corresponds to the locus labeled COG; in Figs. 6b and 6c,, j2 2() corresponds
to the loci labeled CDR and CD, respectively. Qualitative departures from the
situation shown may also occur for potentials U(r) which have other shapes, so
that the integration paths examined here are only a small sample of the many
configurations that are possible.
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Some further properties of the locus of extrema are of importance.
Eamination of Eq. (8.4) for JGe and Eq. (8.6) for EG shows that both of these
quantities are able to take on negative values. For example, JG2 will actually
do so in the case of either a repelling potential or an attracting one that is
non-monotonic in form. It ig therefore possible for the locus of extrema to
enter any quadrant of the (J ,E) plane, but since negative values of j2 are
pysically meaningless and particles coming from infinity always have E > 0,
this curveibecomes of importance only when it enters the first quadrant. Since
the locus 6f extrema is tangent to the cutoff boundary (8.5)at the point
(JG2(r), E(r) ), it always has a positive slope which decreases as r increases.

The locus of extrema itself possesses maxima and minima in the
(r,U) plane. An extremum in the locus of extrema corresponds to extremal values
of both EG and JG2 simultaneously (Fig. 5a), and therefore has two defining
conditions, both of which are equivalent. These are:

dG d G 2= 0 (8.7)
dr dr

The first relation gives:

Ze ( 2 dr 2 d )2 0 (8.8)

The expression for dEG/dr, which is equated to zero in Eq. (8.8),
represents the slope of the locus of extrema in the (r,U) plane. Positive or
negative values of this slope correspond respectively to regions containing
absorption boundaries or trapped orbits (Figs. 4a, 4b, 5a). Numerical tests
of the sign of this quantity therefore provide essential information for the
computation scheme by determining the nature of the potential generated during
each iteration. This quantity will reappear later in nondimensional form in
Eq. (E.29).

^ Since the locus of extrpa always has a positive slope in the
(J 2

1 E) plane, and since dfa/dr and dJGe/dr always change sign simultaneously,
therefore an extremum 2f tEe locus of extrema in the (rU) plane always pro-
duces a cusp in the ( ,E) plane. Two such cusps are visible in Fig. 5b and
in Figs. 6& to 6c.

A potential may )e envisioned that would be sufficiently irregular
in form to cause dln/dr and dJG7dr to change sign several times and therefore
produce a locus of extrema having several cusps, corresponding to multiple
systems of potential barriers. Situations of this type were in fact found to be
generated as transient phenomena by the iterative schem. In order to continue
the calculations beyond this point, it therefore became necessary to incorporate
into the program an ability to calculate charge density even in these situations.
It was feared that the use of approximate calculations at this steg might dis-
turb the computation enough to keep it from converging to the true solution.
It was also considered dangerous to ignore the possibility that in soe cases
even the final solution might have such a configuration. The detailed study of
these multiple-cusp or multiple-barrier potentials, such as that made here,
has therefore been an essential part of this investigation.

Figure 7 shows some possible potential configurations, together
with the resulting forms of the locus of extra in the (rU) plane, and its
corresponding form in the (J2,) plane. The 10 specific cases shown in Fig. 8
have been incorporated into the computation scheme.
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The dotted curves in this figure represent segments of the locus
of extrema which may enter the first quadrant but which do so in such a manner
as not to influence any of the particles which strike the probe. Fo- example,
the presence of any of the dotted segments in cases 5 and 6 in this figure
would represent situations in which the current collection was still orbital-
motion-limited, but the charge density at certain radii was affected by
potential barriers.

This examination of the behaviour of the locus of extrema has
until now considered only the case of an infinite plasma. However, it has been
pointed out earlier (Sec. II) that the calculation scheme defined here makes
use of an outer boundary at finite radius. In general, the presence of any
boundary of this type makes it necessary to modify the preceding discussion;
however, it can be shown that no such changes are necessary for the particular
boundary conditions specified here. To prove this will be the purpose of the
following discussion.

The asymptotic potentials for large radius, 0 a r "2 for a
spherical probe and 0 Cr r-i for a cylindrical probe, derived by Bernstein and
Rabinowitz (Ref. 5), lead to the relations:

d/dr = -20/r spherical probe (8.9)

d/dr = - 0/r cylindrical probe

These relations are used as boundary conditions on Poisson's
equation at the outer edge r = RB of the computation net. Appendix D derives
in detail the resulting method for integrating the Poisson equation.

Examination of Eqs. (8.4) and (8.6) for a power-law potential
Sa r n shows that the locus of extrema does not enter the first quadrant
of the (J 2 ,E) plane for n < 2. Since this condition is satisfied in both the
spherical and cylindrical cases for the power-law potentials assumed beyond
the boundary, the locus of extrema enter3 the first quadrant only for r < RD.
This fact is of advantage in devising the scheme for calculation of the charge
densities for r < RB. It means that the form of the potential beyond the
boundary has no effect on the formulation of these calculations.

As a result, it is possible to calculate both the attracted and
repelled charge densities while leaving the precise dependence of potential on
radius beyond the boundary unspecified; this dependence enters the problem only
as a boundary condition on the integration of the Poisson equation (Appendix D).

The introduction of this power-law boundary condition is of
crucial importance in defining a workable comptation sbemp, because the
fact that the assumed potential at and beyond the boundary is a close approxi-
mation to the actual potential in the infinite case mans that the outer boundary
can be placed much closer to the probe without significantly disturbing the
computed results than would be possible for the oi obvious assumption of a
boundary held at zero potential. .his tatter is ft.- ussed in sore detail in
Appendix H.
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It may be seen from Figs. 4b and 5a that if dEG/dr is positive
over some range of radii, a family of minima in curves of effective potential
will exist in this range. These minima form potential wells which are capable
of trapping particles in bounded orbits that do not strike the probe surface.
An orbit of this type is illustrated in Fig. 4f. As Bernstein and Rabinowitz
(Ref. 5) have point out, these orbits can be populated by collisions, no
matter how infrequently such collisions occur. This effect occurs because
these collisions are capable of changing the energy and angular momentum of
a particle at some radius to values corresponding to those of any trapped orbits
that exist at that radius. A particle thus "knocked into" a trapped orbit will
remain in it until another collision knocks it out again. Appendix A imposes a
modification on this argument; it is shown there that it is much more common
in general for charged particles to be scattered out of their collisionless
trajectories by numerous small-angle encounters than by large angle collisions.
Thus particles will tend to "drift into" or out of trapped orbits instead of
being knocked into them. In any case, the resulting contributions to charge
density cannot be calculated by the collisionless theory used here.

Since the assumption has been made (Sec. II) that all such po-
tential wells are unpopulated, the results of this investigation may be of re-
stricted use to the experimenter in any situation where these results predict
the existence of potential wells. An exception to this will occur if an experi-
mental situation arises in which the population of these orbits can be shown
to be negligible. It may be argued that this occurs for a cylindrical probe;
even when the length-to-diameter ratio of the probe is large enough for the
infinite-cylinder results obtained here to be useful, the trapped particles
may still be expected to leak out of the ends of the geometry rapidly enough to
prevent appreciable charge accumulation. Moreover, if the plasma is flowing
parallel to the cylinder axis, nearly all trapped particles will be carried
downstream by their longitudinal velocity.

This is a fortunate coincidence, because the cylindrical probe
can be shown to be a2.ways surrounded by trapped orbits, which exist everywhere
outside a certain radius. Substitution of 0 Q 1/r, the asymptotic potential
for large radii, into expression (8.6) gives a form for % whose radial deriva-
tive is always poitive in the case of the attracted species. As the probe
potential is increased, the innermost radus of these trapped orbits moves out-
ward. At sufficiently large probe potentialse, a second, inner family of trapped
orbits form adjacent to the probe. The outer boundary of this family then moves
outward upon further increase of probe potential.

In contrast with this situation, the spherical probe, whose
aspVtotic potential 0 a l/r2 Is steeper than that for a cylinder, develops
only the inner family of trapped orbits. In both the spherical and cylindrical
cases, the potential in the vicinity of the probe will be more sballow in form
for smaller ratios of probe radius to Debye length, and the inner famly of
trapped orbits will begin to appear at smaller probe potentials.

It shold be noted here that qualitative reasonin of the type
presented above to arm for the non-population of trapped orbits arowd a
cylindrical probe, is ofter. dangerous. The final ansver to this question must
ultimately co frm a more complete theory or from experiment.

Although the collisionless theory developed here cannot be used
to predict the effect on the CollectdL current of trapped-orbit populatin, an
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argument may be advanced to suggest whether the effect will be to increase or
decrease the collected current in any given case. If trapped orbits near the
probe are populated, the density of the attracted species will be locally
increased. Examination of the Poisson equation (4.3) shows that the magnitude
of V2 near the probe will be increased, tending to increase the curvature of
the potential well near the probe and hence to cause the potential well to
steepen and contract. Particles which would otherwise have orbited into the
probe will miss it and the collection of the attracted species will be decreased.

This argument is subject to the same warning as the preceding
argument. However, it may be made more convincing by examination of a related
effect. Calculations have been carried out in this investigation for the case
in which the distribution for repelled particles is replaced by one corresponding
to the simple "Boltzmann factor" law (Eq. 13.13). This situation corresponds
to repelled particles which are not absorbed or annihilated at the probe sur-
face but simply "reflected" by it. These calculations are discussed in greater
detail in Sections XIII and XV; their relevance here is that they correspond to
an increase in the density of the repelled rather than the attracted particles
near the probe and therefore constitute the converse of the effect of populating
the trapped orbits. As is shown in Sec. XV, the attracted-species current is in
all such cases increased above corresponding values calculated for a completely
absorptive probe. Therefore, if trapped-orbit population increases the attracted-
species density near the probe, we may indeed suspect that the attracted-species
current will decrease. In other words, the results presented here will in thb.
case form an upper bound.

There is one respect in which the two situations discussed here
will fail to be the converse of each other. In the "reflecting probe" situation,
the increment in charge density will have its largest value at the probe surface,
whereas if trapped orbits are populated, the maximum increment will occur at a
certain distance from the probe. Furthermore, an increase in attracted-particle
density will change the potential everywhere, and situations may be envisioned
in which the change is such as to increase rather than decrease the current
collection.

IX, NON-DDMWLIONAL XQTUNION SHERIC' FROE

In order to discard unnecessary groups of syiols an ake
easier the task of constructing a computation scheme, we now rewrite he ex-
pressions developed in Chapter VII in nondimensional form. We therefore intro-
duce the following dimensionless quantities:

zm/kTI PA /

a j2/3La2 k - (vfr)i9

X a Rp/r f- f/iN. (k/)3/2

imI""I), *
IAP . 07 i Z.p
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The Maxwell velocity distribution (7.12) becomes

3/2

= (1/27) 3 2 e "  (9.2)

The mno-energetic distribution (7.13) becomes:

( M)
f (9.3)

Frcom (4.! ). we have:

P.m -(9.4)
-7

Squation (7.8) fchr the deisity of either species of charged particle, becomes:

: ~d f I / (13) Qn -1 - ( x (9.5)

0

Icisson's equation (4.3) reduces to:

12 7 Tineta:2 -" 0 (9o

lnet+= P/P + n+ - n- (9.7)

Equation s (8.4) and (8.6) become:

x dX (9.8)
"G ex dx PG x-

The above e quations, (9.2) to (9.8), together with appropriate
Wts %)n the potential X a d its derivatives in order to find the proper values
, (8 defne the iterative scheme necessary to carry out the calculations.

The current collection (7.10) becomes:

. (2)3/J d p f (1) Ql () (9.9)

If electron current at plaua potential is used as a reference,
*.he net turr.nt equation (7.11) beccaes;

,Let Rlnet/k," - . - ,, (,/,7)1 (9.loa)

A convenient reference current for the ions Is that ion current
vi.Fth would be collected by a probe at plasma potential if the effective tempera-
*,ure of the ions vere the same as that of the electrons. If we define the ion
ct-wr4vt no,-umens1onalized in this manner as L., e obtain:
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= +(116)~

The momentum-energy boundaries 1n(P) my take any one of four %'C"ns.
is the nondimensional form of the cutr _boundary relation (8.5):

an(p) = - x(x) )Ix Ic,

The second corresponds to the probe surface cutoff bo 10'.

" : a~n ( )
= "- Xp ":";T

The third and fourth corkspond respectively to zer0
momentum and to the locus of extrema

When these expressions are s~stituted into Eqs. (9.5),and1 0
or their cylindrical analogues Eqs. (11.2) (11.4), the first thr . aea-

duce integrals in P that may be evaluated an-ically. Expression (r.14) pre
duces integrals that must be evaluated numerIc but may first be transformf.4
into integrations over radius.

These integrations are carried out detail in Appendix E.

From the definitions of 76 and X , weLtain the following
lation between the potential nondimensionalized in tera f ion energy
terms of electron energy:

X_. = -X+ 7%6

Finally, from the definitions of 76-and y , id making use of th Itsma neu- '

trality condition (3.1), we obtain the following relation betweenirz -ratios of,.
probe radius to ion and electron Debye lengths:

Y- - +  -Z ..T. Y+= Y 6+ (9.16)

-.+ o+

X. CYLINDRICAL PROBE

For the cylindrical probe, it is convenient to empl# the usual
coordinates r, e, z. The number density of either species of parti'le is then
given by: V

N() f f(r,v) dv dvzdv

The appropriate constants of the motion are the enert . and
angular momentum J of transverse motion in the (r,S) plane, and the 1ocity
vz of motion parallel to the cylinder axis. E and J are given in terns of vr
and v6 by expressions similar to Eq. (7.3).
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It is useful to define a reduced velocity distribution as

COo" (Es J) L 0 f(E, J, Vz) dv z (10.2)

Vtthen proceed as-in the spherical case, observing that the same discussion
uttie limits ag integration on yr and ve , and hence on E and J, applies

re0 vr= 00 (vrve)
1*r)=JVf (E,J) d E d) (10.3)

rv-

-V - 00 vr0()( 2)d E dJ
a- f Zr 0 v r < ('E)K- 1 (10.4)

r= V-O 2 2

JE=d7Eov<O(2Z n(2) aC )

2 jE 2 2
= ; J d Efvr< 0(E) Kn ar sin 2n(.6

E= nr (E-Ze(r

In= qs(1.)t(1.)thquntie KKJad=4aeasdfnd nSc

*1-k

2 f E=0 i

Thevlocit ditibto thatE is M arcla sin trnsero ot.o i
m 2 / (10.~r)

The volelcityd cisribtio that uis pronolengeti is .tases Doi.i

I47rZ ~ r(07

f fvr<0 25



?(E) m O (E - E) (10.10)

As before, we equate collected currents at plasma potential in
order to fix EM. We first observe that if V is the average velocity of
particle motion transverse to the cylinder axis, rather than the average
velocity of three-dimensional motion, then the number of particles striking
the probe surface per unit area per unit time is Nv/Tr rather than Nv/4.

Equating currents, we obtain:

E= -kT (10.11)

for the cylindrical probe.

XI. NON-DIfMNSIONAL EQUATIONS - CYLINDRICAL PROBE

We define a non-dimensional velocity distribution in terms of
the reduced distribution (10.2):

f .1)

Equation (10.6) becomes:

_ i]=2f ° (). Qnfar {si X} (11.2)

0 n

Poisson's equation becomes:

d ( 7 nnet
dx dx

The current collection equation (10.8) becomes:

00

The Maxwell distribution (10.9) becomes:

1 e~
f = -e (11.5)

The mono-energetic distribution (10.10) becomes:

f 2r" (11.6)

where:

26(1.7)
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XII. THE LIMIT OF ZERO-TEMPERATURE REPELLED PARTICLES

A frequently occurring experimental situation is one in which
the ion-to-electron temperature ratio is very small compared to unity. In such
situations, the positive half or electron collection part of the probe character-
istic becomes very difficult to calculate. The ions, which in this case are
the repelled species, have relatively little thermal energy and are turned back
.J a correspondingly small rise in potential. The ion density falls to zero
very rapidly as the sheath is entered, and the sheath edge tends to become
very sharply defined. Calculations of electron current were found to become
very sensitive in these cases. Since these calculations were considered to be
of substantial value, it was decided to consider the limiting case of zero repelled-
species temperature and modify the computation scheme to obtain the correspond-
ing attracted-species current results. These would then form end-point data
for results obtained at progressively decreasing kepelled-species temperatures.
This modified computation scheme is described here.

We first examine certain expressions for number density N(r) as
a function of potential 0(r), derived in detail in Appendix E. For the repelled
species (Zeo,?O), these expressions are given by Eq. (E.39) for the spherical
probe and by Eq. (E.92) for the cylinder. Examination of these expressions
shows that for probe potentials much larger than the repelled-species thermal
energy, they both reduce to:

N/N = e ZeO/ (12.1)

This dependence is of the same form as that prediced in general
by equilibrium thermodynamics. In the limit T -+0, the value of N given by
Eq. (12.1) is zero for ZeO positive, and indeterminate for Ze0 zero. The region
outside the probe is therefore split by a sharply defined sheath edge into two
regions: a plasma in which 0 vanishes exactly everywhere and the density of
repelled particles is exactly equal to the density of attracted particles; and
a sheath where 0 rises to its value at the probe and from which repelled particles
are completely excluded. The density of repelled particles falls discontinuously
to zero as the sheath is entered. The electric field is continuous across the
sheath edge since no mechanism exists which can produce an infinite charge
density there or anywhere else outside the probe. Therefore 0 and do/dr both
vanish at the sheath edge; the inward flux of attracted particles at this
radius is entirely due to their random thermal motion. The density of the
attracted species outside the sheath is affected by the depletion of these particles
by the probe, but since electric fields are zero in this region, this density
no longer influences the rest of the problem. The flux of attracted particles
reaching the probe is therefore dependent only on the potential distribution in
the sheath, and not on conditions outside it. Computations of potential and
charge density therefore need to be carried out only inside the sheath. The
sheath edge radius is not known in advance, but since no electric fields may
penetrate past the sheath edge into the plasma, its position must adjust it-
self until the total space charge within the sheath exactly cancels the charge
on the probe. This condition is equivalent to the vanishing of dO/dr at the
sheath edge.

These. consideritions serve to define a boundary value problem in
which not only the potential and charge density distributions but also the position
of one boundary, the sheath edge, must be found as part of the solution. 'This
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problem is solved here in order to calculate the collected current in the limit
of zero-temperature repelled particles. Figure 9 shows qualitatively the forms
of potential and charge densities as functions of radius. The subscript B is
here defined as referring to the sheath edge radius.

The modified sltosceeused to calculatethcoltecur
ents is as follows. The boundary condition for (do/dr)B is relaxed. For a
given charge distribution, the boundary conditions 0-+ as r - Rp and 0
then serve to define a well-posed two-point boundary vayue problem for Poisson's
equation. (The solution is derived in detai- in Appendix D. An initial trial
value is assumed for the sheath edge radis RB. An iterative procedure is
carried out, as in the general case, to obtain the potential as a function of
radius, and the collected current. The value thus obtained for the sheath edge
potential gradient (-/dr)B is used to decide whether the assumed sheath edge

radius is too large or too small. A second trial value of RB is computed and
the process is repeated. When a sheath edge position is foumd which produces a
sufficiently small sheath edge potential gradient. the calculation is stopped.

The method for calculating the density of attracted particles
must be modified in the pre'sence of the zero-potential sheath edge. In order
to examine why this is so, we substitute the sheath edge boundary condition
(RB) 0 into the cutoff boundary expression given by Eq. (8.5) and use

Eqs. (9.1) to convert the resulting expression into non-dimensional form. We
then obtain the following expressicn for the sheath edge cutoff boundary in
the ( , 6) plane:

This boundary appears in Fig. 10 as a straight line having

positive slope and passing through "the origin. No particles coming from
infinity can reach the sheath edge having an angular momentum and energy
corresponding to any point below this line. Therefore, in order tc influence
the current and charge densit y, the locus of extrema must now not* only
enter the first quadrant of the "P, 0) plane. but must also rise above this
line. Figure 10 shows the resulting changes that will. -,,cur in Figs. 3a and
6c. As in Sec. VIII, it is instructive to identify +he integration paths
J1 (E) and J 2 (E) with the corresponding .oci in Fig 1.0. .n 7igs. 10a and lOb,
J-(E) is represented by the loci ACF and AC. respectively; J2(E) is repre-

sented by the paths ABG and AUC., rpespect.j...ely. Once again, it should be-noted
that these particular configur~ions are only a small sample of the many that
are possible.

Using Fig. ")a and the notation developed in Appendix E. we
obtain the following expression for the maximum current of collisionless
attracted particles that may be collected by a probe in the presence of the
zero-potential sheath edge at the locatlon x = xB,

i v 12 00 + il (PC) (2.3)

where is the value of 0 corresponding to the intersection between the lines
=  and P = 4 Q., which is therefore given by-

- (12.4)
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\F
. For the spherical probe, we substitute Eqs. (E.34) and (E.35)

into Eq. (12.3) to obtain:

( = (- (Pc + 1) e-'C) +(PC - Xp + 1)e- C (12.5)

For the cylindrical probe, we substitute Eqs. (E. 89) and (E.90)
to obtain:

2 -P( , 12 -PCr< ;]
= x -2 eC + g r-C'}J+ '- e[ 4 ,c- +

(12.6)

These expressions give the maximum values of collected current
that can be drawn from a concentric outer boundary for a given boundary radius
and potential difference between the inner and outer boundary, when the outer
boundary emits collisionless Maxwellian particles inward. An expression equi-
valent to Eq. (12.5 ) has been derived by Medicus (Ref. 30). For large values
of RB/Rp expressions (12.5) and (12.6) approach the orbital-motion-limited
current expressions (E.43a) and (E.94a), respectively. For values of RB/Rp
only slightly greater than 1, they reduce to the usual expressions for current
increase as a function of sheath edge radius in which it is assumed that all
particles entering the sheath strike the probe. Large values for RB/Rp may be
expected. to occur if the probe diameter is small compared to the attracted-
species Debye length (R << ?D) and the probe potential is large; RB/Rp will
be close to 1 if Rp >>

The currents given by Eqs. (12.5) and (12.6) in terms of sheath
edge location are upper bounds for the current values calculated here by the
solution scheme described above. These upper bounds are never actually attained

'(for a given sheath edge location) because barriers of effective potential
are always present within the sheath. This is because there will always be a
region just inside the sheath edge in which the potential va ies more steeply
with radius than an inverse square law. (This happens in spite of the fact
that the potential gradient approaches zero at the sheath edge.) This is
equivalent to the statement that the locus of extrema always enters the region
P-> O, O> fl xB2 . The latter may be proven by noting that at x,= XB,

X = dX/dx = 0 and d2 X/dx2 < 0, and substituting this informatioh into Eqs.

(9.8) for fG and PG"

In the limit of large Rp/%D, the sheath lies close to the probe

surface and is well approximated by a planar situation in which all particles
entering the sheath strike the probe. The collected current can then be cal-
culated if the sheath edge radius alone is known, and the sheath edge radius
can be obtained from the solution of the planar Poisson equation. This solu-
tion is derived in Appendix F for the case in which the particles being
attracted into the sheath are Maxwellian. At large probe potentials the form

of the solution curve is asymptotic to the familiar Child-Langmutr sheath
relation. Since this relation does not correctly predict the form of the sheath
potential at sma& potentials, a finite difference between the sheath edge
radii predicted by the Child-Langmuir and the exact solutions will persist
even at large probe potentials.
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If either the spherical or cylindrical mono-energetic distribu-
tions (Eqs. (9.3) and (11.6), respectively) are substituted in place of the
Maxwellian in Appendix F, and the corresponding calculations are repeated,
sheath potentials will result which are different than the one derived there.
These can also be shown to be asymptotic to the Child-Langmuir result, so that
the above remarks apply once again.

These spherical and cylindrical mono-energetic distributions
will produce sheath potential shapes, even in the large-probe limit, that differ
from each other as well as from the Maxwellian result. This is because the
cylindrical distribution of Eq. (1l.6) is mono-energetic in transverse motion

only. The spherical distribution of Eq. (9.3) forms a spherical shell in velocity
space; on the other hand the distribution corresponding to Eq. (11.6) forms a

* cylindrical shell. No distribution of longitudinal velocity exists which can
make the two equivalent.

XIII. MONO-ENERGETIC ATTRACTED PARTICLES; THE PLASMA APPROXIMATION

It has been indicated earlier (Sec. IV) that other authors have
substituted a mono-energetic model for the velocity distribution of the attracted
species, in place of the more realistic Maxwellian, in order to reduce the pro-
blem from a system of integral equations to an ordinary differential equation
and make the task of ob~aining numerical results substantially easier. Since
one of the goals of thi$.research has been to display explicitly the effects
of this approximation by.eomparing the results with those for the Maxwellian case,
a routine for calculation of the density of mono-energetic attracted particles
has been incorporated into the computing program. This subprogram operates

*E within the iterative scheme designed for the Maxwellian case. One practical
benefit that has resulted has been the use of this subprogram to provide a very
good first approximation for the Maxwellian case, which is much more expensive
in computation time. This has resulted in a substantial reduction in the total
computation time required to obtain the Maxwellian results.

Furthermore, the Maxwellian and mono-energetic distributions
coalesce in the zero-temperature limit, so that the zero-temperature mono-
energetic results provide an end point for curves of collected current vs
attracted-species temperature for either distribution.

We therefore include here a brief derivation of the expressions
for the density of mono-energetic attracted particles. Apart from notation,
many of these expressions are substantially the same as those developed in Ref.
5.

For the spherical probe, substitution of Eq. (9.3) into Eqs.
(9.5) and (9.9) gives:

I _ X a{M)( ) (

11-1

2
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where M = L

For the cylindrical probe, substitution of Eq. (11.6) into Eqs.
(11.2) and (11.4) gives: 1

1 4n M x

- = arc sin L M J
n

2i ;T q l(M

In both the spherical and the cylindrical cases, the locus of
extrema normally has the general appearance shown in Figs. 5b and 6, with two
exceptions: first, the"upper cusps shown in these diagrams are generally ab-
sent for small probe potentials or large probe radii because the potential in
these cases will remain steeper than an inverse square law near the probe (no
inner family of trapped orbits); second, for the spherical probe the lower
cusp usually vanishes, because in contrast with the cylinder, the potential will
remain steeper than an inverse square as radius increases. In this case the
locus of extrema corresponding to large radii becomes tangent to the a axis as
shown in Fig. 7a.

As is shown in Fig. 6, as the radius increases, the cutoff line
(shown as DE in Fig. 6b) moves downward and to the right, and its point of
tangency D (Fig.6b) moves downward along the locus of extrema. Two cases may
be distinguished: at smaller radii, D is above the energy level OM. This
energy level would appear as a fixed horizontal line in Fig. 5b and Figs. 6a to
6c but is not included since these diagrams have not been drawn for a specific
distribution function. This line would then intersect the segment CD of the
locus of extrema in Fig. 6b. Corresponding to this situation it is evident
from the definitions of i (A) and A2(0) that we have =l(OM) = ( M
At larger radii, D goes below the energy level PM. In this case, a line repre-
senting this energy level would intersect both the segment DH of the locus of

extrema Rnd the cutoff boundary DE in Fi;. 6. Cgrrespondin to this situation

we have 1l(0M) - AG(M) and 12(0M) = (- x)/x . In both cases, 0 p-
= Q1 = -l and Q2 = 2. If we define xM as the value of x at which the point

o tangency is at energy OM, we then obtain for the sphere, from Eq. (13.1):

a G(P) X2"2 2 O • "x>

(13.3)

Similarly, for the cylinder we obtain from Eq. (13.2):
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- arc sin {, ; x > X

*l- arc sin 1  X2x<X (13.4)

OM (1- /M)

The radial coordinate xN may be given a physical interpretation
by noting that for radii smaller than the one corresponding to this value,
01(%) = 02(N"); in other words, all particles that exist at these radii strike
the probe. The quantity xj( therefore corresponds to an absorption radius for
the mono-energetic attracted particles; any of these particles that have small
enough a ar montum to allow them to come inside this radius are collected
by the probe (Fig. 4a). If the distribution function.is poly-energetic, a
continuum of such radii exists, one for each energy level in the distribution.
These radi decrease as the corresponding energy increases. For particles
possessing sufficiently high energies, no absorption radius exists; collection
of these particles is orbital-motion-limited. In situations such as that of
Figs. 5 and 6, where the locus of extrema goes through a maximum and an inner
family of trapped orbits exists near the probe, there also exists near the probe
a region containing no absorption radii.

The cutoff boundary Pa %(xN) + £Ax 2 corresponding to the
radial coordiate xz is tangent to the locus of extrema £G() at the point
NGPO PM); therefore, at x u xt, we ha:

x2 X(x)
~.0o

x2

4 ( (P) X24~ .o(35

The first of these conditions Iq .ies that the second bracketed
quantity in Eq. (13.3) Vansbhes at x -LVA, and that the bracketed quantities
in Eq. (13.4) re equal to unity at x *A .

In order to derive the entein and Rabinowitz differential
quations for potential as a function of radiuss we identify the attracted

species with the ions, and we define new non-dimensional radii and ion currents.
We assumw that the pobe potential is negative, or ion attracting, A that it
is much greater in mgnitude than the electron energy. We use a reference
radius the electron Debys length k. (E k./q.2ZL.)1 and as reference current,
the ion current that would be collected by a sphere, or by unit length of
cylinder, having a radius of one electron Debye length Ir the ions were Nax-
wellan and their effectl temperature (Sec.III) ,ere equal to that of the
electrons. e For the sphere and cylinder, respectively, the non-dimensional
currents I* referred to these refurence currents are:
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i*_ 2 ...~ ( ')= + Y- (1.6
' - +(Z + +A ) I \m Z. _+7

M(13.6)

i+(Z+ e =+ D )- M "  Z "- m+ / Z. =+/,

We note that Eqs. (13.3) and (13.4) contain the expression X+/O M. This becomes:

X+ X_ X. X (137)
\Z+ M/

The new quantity 0" defined by Eq. (13.7) represents non-dimen-
sioral energy for the mono-energetic !.ons, now referred to the temperature of
Maxw." lia. electrons rather than to the temperature of a corresponding distribu-
.0IUr of Maxwellian ions as in earlier Sections. The quantity O, which is the
ratio E+/kLI, is therefore not contained in the definItI of 0*. For singly
charged ions, as is usually the case, e is identical to the quantity 0 used in
Ref. 5.

We also note that X->Ofor all x.

We define a new radial variable 9 as follows:

r - r y. - (13.8)
-"D_ Rp .

We substitute Eqs. (13.6) to (13.8) into Eqs. (13.3) and (13.5)
t.. c tair for the spherical case:

(13.9

1 + 0 -

For the cylirder, we obtain from Eqs. (13.4) and (13.5):

arc sin{~~~+.}It

1 _ . .5 ,J. - (1310
a1Ia *2
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Expressions (13.9) and (13.10) are in a form equivalent to those
derived by Bernstein and Rabinowitz (Ref. 5) for ion density. By comparing
Eqs. (13.9) and (13.10) with their Eqs. (34) and (51), it is possible to obtain
expressions for their nondimensional current k in terms of the quantities de-
fined here. For the sphere and cylinder, respectively, these are:

2 - *

7 1 (13.11)
7

The second expression in Eq. (13.11) illustrates the reason why
Bernstein and Rabinowitz were unable to display solution curves for the cylindri-
cal probe for the case 0 = 0, which is a nonsingular limit of Eq. (13.10); they
nondimensionalized their ion current using a reference current which is a func-
tion of *. As e -+0, their nondimensional current . becomes infinite for a
given robe potential X_ and probe radius tp, whereas the actual current
collecte.d is finite.

In terms of the radial variable , Foisson's equation (4.3)
becomes, for the sphere and cylinder, respectively:

1 d (g2 AX- 1.-T
Nt 2  at dt (13.12)

1 d

From Eqs. (.39) and (E.92), we obtain for x1p >> 1, the follow-
ing expression for electron density:

Se X  (13.13)

This approximation together with Eqs. (13.9) to (13.12) con-
stitutes the Bernstein and Rabinowitz differential equations for potential vs
radius, for the sphere ,nd cylinder. This expression for the electron density
would also be correct+ for small repelling probe potentials in the hypothetical
case of a probe which reflected all electrona which struck it, because the
electrons would then not be depleted by the probe and would be in thermodynamic
equilibrium; Sq. (13.13) coincides with the well.known distribution correspond-
ing to this condition.

If the limit of zero Ion temperature, 0*-# 0, is taken in Eq.
(13.9), the result diverges for > 9N; for t < tH, we obtain:

This result implies that ta -#, as 0* -*0: this can also be
proven by letting 0-o 0 in Eq. (13.9b); ve obtain the result X.(|Iq) -.0; this
in turn implies N -#a . As Bernstein and Rabinowitz have pointed outgEq.
(13.1), apart from notation, is identical to the form which Allen, Boyd, and



Reynolds (Ref. 6) derived by assuming that the ions had no thermal motion and
fell radially inward from infinity under the influence of the electric field.

The form of Eq. (13.14) indicates that the solution scheme
developed here for the general case will break down for the spherical probe
in the limit of zero ion temperature. This may be seen by noting that as
-4, we require + -i 1; we observe that Eq. (13.14) specifies the collect-

ed current i* in terms of the limiting behaviour of the potential X_ at in-
finite radius. Since the present calculation scheme replaces the infinite
piasma by a finite outer boundary, it is clear that the scheme will fail to work
in the limit 1* -*O. In fact, it may be expected that the calculation scheme
for finite ion temperature will become progressively more ill-behaved as ion
tenperature decreases because the form of the potential at large radii will
become relatively more important. This expectation has been borne out in com-
putations for the spherical probe in both the Maxwellian and the mono-energetic
cases (Sec. XV; Appendix H).

-. -The Bernstein and Rabinowitz and Allen, Boyd and Reynolds cal-
culations do not have this difficulty because they extend to infinite radius.
Neither of these, however, is able to deal with a Maxwellian plasma or a small
probe potential. Therefore, no method exists at present to adequately treat
these cases when the ion temperature is small. However, for large probe po-
ten+ialn. the Allea, Boyd and Reynolds equation is the zero-ion-temperature
limit for the Maxwellian as well as for the mono-energetic case. Solutions o:
this equation may therefore be expected to provide an end point for curves of
ion current vs ion temperature, and thereby enable graphical determination of
ion current in the complete range of teperatures extending to zero.

Accordingly, a numerical solution of the Allen, Boyd and Rey-
nolds equation has been carried out here (Appendices G and I) in order to pro-
vide these limiting values. This is in spite of the fact that this task has
already been carried out by three other authors (Refs. 5, 6 and 8); none of
these has carried out calculations in the complete range required here, and
none of them has published his computer program.

A qualitatively different situation is obtained for the cylinari-
cal probe if the limit 13*-* 0 is taken in Eq. (13.10); we note that |f does
not become infinite, and that the expression for q+ does not approach the
expression that may be derived by assuming that the ions move radially inwari
(Ref. 8). This anomaly has been a source of concern to several prevlou4
authors (Rets. 6 and 8); some light may be shed on it by studying the behavioir
of the electric potential at large radii.

For the sphere, we assume I > tN, t.. and X. -#0, and approxi-
mate the set of Bernstein and Rabinowitz differential equations (13.9), (13.12)
and (13.13) to obtain:

+ 1 -X l+ -C l.5
d2 T dt 2 0*! k~ (W

If X o , the left side of Eq. (13.15) O |-(1a2) and
vanishes to order N; neither bracketed term on the right side vanishes; there-
fore, N a 2, and we obtain, to second order in t



x. 1i i -2 ' (13.16)

Apart from notation, this result is the same as that obtftned
by Bernstein and Rabinowitz using the plasma approximation.

If e* -*0, the coefficient of in Eq. (13.16) vanish.,
and the leading term in the potential for large radii may be found from.
(13.14) by noting that as g -' , + -.1; this gives:

.4 (13.17)

For the cylinder, we combine Eqs. (13.10), (13.12) and (*13)
and approximate as before to obtain:

d2_ + yX2  1d1 i 8)

For finite 1 X_ vwiishes in comparison with 0* in the limit

of large radii; once again, if X_ Z -N, the left side vanishes to order 1#
we obtain, to first order in :

To obtain the leading term in the case 0* = 0, we proceed to-
this limit in Eq. (13.18) before letting %. -4 0; we then obtain:

22
( i* (13 )

Examination of these asymptotic potentials shows that in the
case of the sphere, the potential becomes a steeper function of radius in theV
limit of zero ion temperature, whereas for the cylinder, it becomes shallower.,
Furthermore, for sufficiently small ion temperatures and large radii, the de- %
pendence of potential on radius will always be steeper than an inverse square
law for the sphere, and shallower for the cylinder.

In order to illustrate the significance of this difference, we
consider an ion of zero total energy and zero angular momentum, which suffers
a small deflection while falling radially inward toward the probe under the in-
fluence of the electiLc field. We assume that this ion is deflected in angle
but that its speed is unchanged; i.e., its total energy remains zero but it
acquires a finite angular momentum. It is possible to show (Fig. 4) that if it
is moving in a potential steeper than an inverse square, it will always continue,
to fall inward to the probe, but if the potential is shallower than an inverse
square, and the ion has acquired sufficient angular momentum, there existr a
turning poin. in its orbit. It will miss the probe and move back out into
the plasma; it will fail to be collected.

36



In any physical situation all of the ions are scattered to some
extent by the presence of other particles (Appeiidin, A) and will in general
acquire a non-zero distribution of angular momenta. If this distribution
corresponds to one isotropic at infinite radius, and if the total energy of
each ion remains unchanged, the results computed here for the cylinder, which
are based on the zero-ion-temperature limit of Eq. (13.10), will correctly pre-
dict the current. Chen (Ref. 8) has carried out zero-ion-temperature cylindri-
cal-probe calculations based on the assumption that the ions have zero angular
momentum and move radially inward. His resulrs may be expected to over-
estimate the current collection.

Since the cold-ion limit gives a result that disagrees with
the zero-ion-temperature assumption of radially inward motion, the ion tempera-
ture e plays the role of a singular perturbation, similar to that of the in-
verse Reynolds number in continuum fluid mechanics. It is this fact that Chen
has not taken into account.

Of some interest in studying the behaviour of the potential is
the "plasma approximation" or "quasi-neutral solution". This solution is ob-
tained by observing that outside the sheath the ion and electron charge den-
sities approach each othel very rapidly, so that the difference between the two
rapidly becomes much smaller than the magnitude of either. Therefore, the
potential obtained by making the approximation of equal charge densities,
+ = i_, is a close approximation to the actual potential.

Using this approximation, together with Eqs.(13.9), (13.10) and
(13.13), and solving for the radius , we obtain, for the sphere and cylinder,
respectively:

i* -x- 4 e-
= e

(13.21)

r = (8* + X_)2 sin (weX)

We observe that in both cases, the radius t becomes large as
tIApotential X_ becomes small, as expected, but that g also becomes large
for krge X_. This means that for a certain value of X-,t goes through a
minifnu, and the potential slope dX./dg becomes infinite. This suggests
that the corresponding radius t is a lower limit for radii at which the plasma
approximation will hold.

It is of interest to compare the value of X_ at which dX./dt
becomes infinite, with a predictim derived by Bohm (Ref. 12) that at the sheath
edge X_> for a stable sheath.

~4differentiating -2 and t-1 with respect to X_ in Eqs.
d%) 4W(W21b) respectively, and equating the result to zero, we obtain

tn, eX sions for the sheath edge potential XSE:
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1 e' SE ,
(* XSE) + 2 e + XSE) =0

(13.22)
t8~i(7e XSE. -XSE

an (Vr " . -2 27r e Xs.) = 0

Solving Eqs. (13.22) numerically for the value of XSE associated
with a given 0" shows that Bohm's criterion is fulfilled in all cases. For the
sphere, XSE = 1/2 when. * = 0; as P" increases XSE first increases, then maxi-
mizes for e somewhat less than unity, then decreases toward In 2 = 0.693...
as 0" becomes large. For the -ylinder, XSE is slightly less than unity for 0*=0,
and decreases to In 2 as 0" becomes large. Therefore, another qualitative
difference between the sphere and the cylinder is seen to exist; for moderately
small 1*, the rate of change of sheath edge potential with 0" is positive for
the sphere and negative for the cylinder.

Expressions for the absorption boundary potential and radius may
be obtained by substituting the expressions for EM in Eqs. (13.9) and (13.10)
into Eq. (13.21). For the sphere, this procedure gives:

-2XM XM
4e + 

(13.2.3)

2e 
2.M-M e2 -,Mr i*-

For the cylinder:

= n 2

2 7r i*2  (13.24)

M = + n 2

Expressions (13.23) and (13.24) show once again that for the
sphere, the absorption boundary moves out to infinity as the ion temperature
becomes small, whereas for the cylinder, it remains finite. By allowing P"
to become large in Ej. (13.23a) we obtain XM -+ In 2; for the cylinder,
XM = In 2 for any P . Therefore, in both cases, as P* becomes large,
XM -. XSE; if the attracted species is much hotter than the repelled species,
the absorption boundary and sheath edge radius tend to coincide.

Many of the results obtained here may be expected to agree
qualitatively with the Maxwellian case, for which it is impossible to use
these methods to obtain similar expressions.
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XIV. ORBITAL-MOTION-LIMITED COLLECTED CURRENT EXPRESSIONS

The orbital-motion-limited current (Sec. VIII) is that collected
by a probe when none of the particles which come from infinity and are capable
of penetrating inward to the probe are excluded from it by intermediate barriers
of effective potential. In other words, all particles which lie above the probe
cutoff boundary of Eq. (8.3) in the (J2 ,E) plane actually reach the probe. For
the attracted species, it is the collected current in the limit Rp/?D - 0, and,
in certain cases, it is the collected current within a finite neighbourhood of
this limit (Appendix E; Sections XV and XVI). We summarize here the expressions
for orbitalamotion-limited current derived in other sections. From Eqs. (E.43)
and (E.94), we have for Maxwellian particles:

For the spherical probe:

i = 1 - Xp Xp < o
-Xp (14.1)

i = e ; , p_>O

and for the cylindrical probe:

2i_ +g ( 4- p ) p< o

-Xp (14 2)
i =e Xp >O

From Eqs. (13.1) and (13.2), setting l(PM) = PM- Xp, we ob-
tain for mono-energetic particles, for the sphere and cylinder, respectively:

i = 7- Xp xp <_4

(14.3)

It is often useful to non-dimensionalize the ion current by
dividing by its value when the ions are at electron temperature and the probe
is at plasma potential. We substitute expressions (9.10b) and (9.15) into Eqs.
(14.1) to (14.3) to obtain the following ion current expressions. For Max-
wellian ions collected by a spherical probe, we have:

F76 (14.4)

Xp /76
i. = r6e ; p
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For Maxwellian ions collected by a cylindrical probe:

() (14.5)

xp./7T6
+.=I v-  e ' p

For mono-energetic ions, we obtain from Eq. (14.3) the following
expressions for the sphere and cylinder, respectively:

(14.6)

L Xp+ Xp_ 7

Examination of Eqs. (14.4) to (14.6) shows that in general, the
mono-energetic expression approximates the Maxwellian much more closely for
the cylindrical case. For the sphere, the two do not approach each other at
large probe potentials as they do for the cylinder. It is also noteworthy
that as the ion temperature becomes zero, the orbital-motion-limited current
becomes infinite for the sphere, but remains finite for the cylinder.

Computations of current for a cylindrical probe in the general
case show that in certain ranges of Rp/N' , the differences between the Maxwellian
and the mono-energetic results are considerably greater than in the orbital-
motion-limited case (Sec. XV).

We also note once again that the roles of ions and electrons in
expressions (14.4) to (14.6) are completely interchangeable.

XV. RESULTS AND DISCUSSION - SPHERICAL PROBE"

Before beginning discussion of the relevant features of the cal-
culated results, a brief description is given of where can be found the various
items of background material in this report. The Fortran II programs that have
been developed and used to obtain the numerival results presented here are
listed in Appendix I. Table 3 identifies the most important Fortran variables
and formulas in these programs with their text equivalents. Representative
samples of printed output obtained from the University of Toronto IBM 7094
digital computer using these programs are shown in Appendix J. Computed current
collection results are presented in Table 5 for the spherical probe and in Table
6 for the cylindrical probe. Appendix H contains a discussion of the accuracy of
these results. Current collection results, potential and charge density distri-
butions, and trapped-orbit and orbital-motion-limited-current boundaries are
shown in Figs. 13 to 31 for the spherical probe and in Figs. 32 to 51 for the
cylindricaj, probe.

It is common usage to employ the electrons as the reference
species in any discussion of Langmuir probes; this convention is followed in
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presenting these results. The electrons are also the hotter species in the
majority of situations of laboratory interest; accordingly, results are pre-
sented here for the range 0 < T+/T° < 1.

For brevity of presentation, we also assume in presenting all
results that Z+ = 1 and Z. = -1. As pointed out in Sec. III, this assumption
involves no real loss of generality since the results may be applied to the case
of multiply charged ions by scaling the temperature ratio T+/T.. Since the
nondimensional probe potential Xp. referred to electrons always has the
opposite sign to the probe potential op, it is also common practice to use as
a nondimensional probe potential the quantity -Xp; since Z = -1, we have
-Xp_ = plkT_.

It has already been pointed out (Sec. III) that the roles of
ions and electrons are interchangeable for purposes of this discussion; also
that these results may be applied to the case of multiply charged particles
by scaling the quantity T+/T-. It is also note-worthy that if the need arises
to use the colder species as reference, these results may be expressed in terms
of nondimensional probe potential relative to the colder species, and the ratio
of probe radius to colder-species Debye length, by using Eqs. (9.15) and (9.16)
to scale the quantities Xp and 7.

Furthermore, the nondimensional probe potential referred to the
colder species is always larger than that referred to the hotter species so
that these results, which are computed for values of Xp, referred to the hotter
species, from -25 to 25, will always cover a range larger than this when referr-
ed to the colder species. By identifying the colder species with the electrons,
it is possible by the above reasoning to apply the results presen ed here to
cases in which T+/T. is greater than unity.

The results of these calculations therefore apply to a considerably
larger range of situations than those evident at first glance.

The preceding remarks in this Section apply not nly to the re-
sults for the spherical probe but also those for the cylindrica, probe presented
in Sec. XVI. The remainder of this section is devoted to a dis ussion of the
computed results for the spherical probe which appear in Figs. 3 to 31. The
current collection results plotted in Figs. 20 to 29 are also p esented in
Table 5.

Figure 13 shows potential vs distance from probe surface in
electron (or ion) Debye lengths for a probe at a fixed potenti e~p/kT. - 25,
for equal ion ankelectron temperatures and a range of ratios of probe radius
to either Debye length from 1 to 100. Figure 14 shows correspon ing ion and
electron charge densities. In both cases the influence of the pr be ma be
seen extending a greater number of Debye lengths into the plasma as R/k D. is
increased. The local rise in attracted-species charge density nar the
probe for the smaller values of Rp/D. shown is due to two causes. ,Firstthe
potential in this region is of a form which allows particles having bertain
values of angular momentum and energy to orbit the probe many times before
falling into it or moving back out to infinity; the presence of these particles
in this region therefore produces a rise in charge density because of their
long dwell time. The second reason is that because of the spherical geometry,
the particles moving toward the probe are concentrated into a smaller volume
as they approach it; their density m.ust rise accordingly.
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A situation in which the ions and electrons are at different tem-
peratures is shown in Fig. 15. In this diagram potential is plotted against
radius for various values of probe potential for the values T+/T. = 0.1 and
Rp/ D. = 10. The marked asymmetry between the cases of positive and negative
probe potentials is due to the fact that in these two ranges the colder and
hotter species, respectively, are repelled. As discussed in Sec. XIII, the
amount of electric field that penetrates past the sheath edge into the plasma
is nearly proportional to the thermal energy of the repelled species; therefore,
shielding by the ions at positive probe potentials is nearly complete, whereas
electron shielding at negative probe potentials allows a much larger amount of
electric field to penetrate into the plasma.

A related set of charge distributions is plotted in Fig. 16,
which shows ion and electron densities for a probe at positive potentials for
the same range of cases as those shown for a positive probe in Fig. 15. The
progressive increase in charge separation associated with sheath formation and
growth is evident here. If the results corresponding to eop/kT_ = -25 and
Rp/D._ = 10 are compared in Figs. 14 and 16, the difference between them is that
in Fig. 16, the repelled species, i.e. the ions, is no longer at the same tem-
perature as the attracted species but only at a tenth of it. Comparison of these
results shows the sharpening of the sheath edge as the repelled-species tempera-
ture is reduced with attracted-species parameters held constant. The dotted
curve in Fig. 16 showing the corresponding result for T+/T_ = 0 shows this trend
carried to completion.

Figures 17 and 18 show potential and charge densities, respectively,
plotted as functions of radius for the case of zero attracted-particle temperature
and large probe potential, obtained by numerical solution of the Allen, Boyd, and
Reynolds equation (Ref. 6) as treated in Sec. XIII and Appendix G, and carried out

by Program 4 (Appendix I). Figure 17 also shows as a dotted curve the trapped-
orbit boundary. If some particular situation involving zero attracted-species
(ion, in this case) temperature has values of probe potential and Rp/'D corre-
sponding to values of potential and r/\D. in Fig. 17 which lie above this bourd-
ary, then the form of the potential adjacent to the probe will be such that
trapped orbits of the type discussed in Section VIII exist. The results plotted
above this boundary are therefore subject to the qualifications noted in that
Section, namely, that the population of such orbits must be negligible. In Fig.
17 and in all later diagrams in which trapped-orbit boundaries appear, it is to
be understood that they refer only to a fully Maxwellian plasma, and not to one
with a mono-energetic distribution for the attracted species; zero-temperature
attracted particles are included in this definition as a limiting case of the
Maxwellian distribution.

The increasing concentration of the attracted particles as they
move radially inward toward the probe is again visible in Fig. 17, as in Fig.
14; in this case the particles do not orbit the probe and the increase in their
density is due only to the decrease in the volume that they occupy as they
approach the probe.

If the probe potential is now changed in sign so that the particles
which are at zero temperature are now the repelled ones, then the situation is as
described in Sec. XII. In particular, the sheath edge radius in this case is
now a sharply defined location at which the repelled-species density falls dis-
continuously from its value outside the sheath to zero within it. Computed
values of this sheath edge radius are plotted in Fig. 19 as a function of probe
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potential and ratio of electron, i.e. attracted species, Debye length to probe
radius. The results for non-zero values of ? D /Rn have been computed using
Program 2 (Sec. XII; Appendix I): the curve for ?\ = 0 has been zomputed
using Program 3, which calculates the probe characteristic in the planar-
sheath limit (Appendices FI). The smooth transition in the result from the
non-zero case to the limit may be regarded as a check on the correctness of
both programs; on the other hand, the steep variation of sheath edge radius with
AD J /p near this limit at larger probe potentials is an indication that the
more orpiete description deviates rapidly from the planar-sheath approximation
as D.JRp increasos. The trapped-orbit boundary is also shown in this diagram.

The trapped-orbit boundaries shown in Fig. 19 and subsequent
diagrams have been obtained from the computed results by the following method.
Corresponding to each set of values of the three parameters T+/T.., eo/kT..
and Rp/?D is a maximum radius at which the shape of the potential allows
trapped orbits to exist. Table 3 identifies this quantity in the output of the
computer programs. The ratio T+/T_ and either one of the two quantities
e~p/kT_ or Rp/kD. are held constant and this maximum radius is obtained as a
computed result for several values of the other. It is then extrapolated back
to zero distance from the probe as a function of this quantity.

Figure 20 shows attracted-species (ion or electron) current
collection as a function of probe potential for the case T+/T. = 1 for various
values of Rp/ D -. The result for R /?\D = 0, the orbital-motion-limited
current is obtained from q. (141; the remaining curves are computed re-

sults appearing in Table 5c.

Figure 20 also shows the trapped-orbit boundary for T+/T. = 1;
as in Figs. 17 and 19, this boundary corresponds to the smallest probe potential
for a given value of R/k D  or equivalently the largest value of R /\D_ for
a given probe potential, for which the form of the potential adjacent to the
probe is shallow enough so that trapped orbits exist. The question of whether
these trapped orbits, when they exist, will be populated, has been discussed
.n Sec. VIII. In that section it is pointed out that if these orbits are
populated, the probable effect will be a decrease in current collection below
the values shown in Fig. 20. All results in this diagram corresponding to
points above this boundary are therefore subject to this qualification.

Ion current results for the case T+/T. = 0 are shnwn in Fig.
21, plotted as functions of probe potential for various values of R /aD..
These resuits correspond to the potentials and charge densities of Pigs. 17
and 18 and are therefore based on the simplified electron density model of
Eq. (13.13). Accordingly, for values of -eop/kT. smaller than about 5, they can
be expected to deviate significantly fromn current collection values correspond-
ing to the more realistic model of an absorbing probe (i.e. one that collects
every charged particle that strikes it), and should therefore be used with
caution. In contrast with the case of finite ion temperature (Fig. 20) the ion
current at zero ion temperature increases without limit as Rp/XD. is decreased,
for any fixed probe potential. Figure 21 also shows the trapped-orbit boundary
correspondirg to T+/T. = 0. The current collection results shown in this dia-
gram appear in Table 5a.

Figure 22 shows electron current as a function of probe potential
for various values of Rp/D, for the case T+/T. = 0, i.e. for the case of zero-
temperature repeled particles. Thv results for non-zero values of R/AD.
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4 have been computed using Program 2 (Appendix I); the result for R&D- = 0 is
the same as that for Fig. 20. Once again, the trapped-orbit bounaary is shown.

Comparison of Fig. 22 with Fig. 20 shows that the electron
current decreases more rapidly as Rp/XD. increases when the ions are at zero
temperature than when they are at electron temperature. This effect is brought
out more clearly in Fig. 26; the reasons for it are discussed in connection
with that diagram. The current collection results in Fig. 22 correspond to
the same cases as the sheath edge radii shown in Fig. 19.

Ion collection as a function of ND./R is shown in Fig. 23 for
eo/kT. = -25 and values of T+/T_ of 0, 0.5 and 1. This diagram has been
plotted in this manner in order to best illustrate the behaviour of the
collected current as ADJRP becomes small. This diagram shows that for smaller
values of AD /Rp the ion collection is not a monotonic function of ion tempera-
ture; this behavlour is brought out more clearly in Figs. 27a and 28. This
diagram also shows the corresponding results for mono-energetic ions. The
curve shown for the case T+/T_ = 0 is a member of both the Maxwellian and mono-
energetic families of curves in this diagram since, as pointed out in Sec.
XIII, the mono-energetic and Maxwellian distributionsare the same in this
limit.

The kink in the mono-energetic curve for T+/T. = 1 is caused by
the fact that current collection for mono-energetic ions becomes orbital-motion-
limited at 'this point. It may also be noted that no such feature appears in
the corres onding Maxwellian result. The reasons for this behaviour have been
discussed in Sec. VIII; this section also defines what is meant by orbital-
motion-li ted current when the attracted species is Maxwellian. The results
foi ion and electron collection are of course the same for the case T+/T. = 1.

None of these curves extend to XD./Rp = 0 since the computation
scheme has been defined only for finite values of R./ D _• An exception to this
occurs in Figs. 25 and 45 for the case where the repelled particles are at zero
temperature.

The trapped-orbit boundary for the Maxwellian case is also shown
in Fig. 23. As mentioned in connection with Fig.o17, all trapped-orbit boundaries
shown in this and other diagrams refer to a fuliy Maxwellian plasma only.

In order to display more clearly the behavior of the ion current
at small values of Rp/XD , the same results as those of Fig. 23 are shown again
in Fig. 24, plotted as functions of RD/AD. instead, of ND./Rp. Here the re-
sults shown for non-zero-values of T+7T. indicate that in thi Maxwellian case,
the current collection for non-zero values of RD/ D approaches the result
for R /XD. = 0 only as a limit. In contrast, the mono-energetic results show
a finite range of values of R/AD. in which the current has a constant value.
In Sec. XVI, it will be seen that the corresponding Maxwellian results for the
cylindrical probe, unlike those for the sphere, also show such a region of con-
stant current level. Appendix E contains a discussion of the reasons for this
difference in behavior. Since it was impractical to use the computation scheme
arbitrarily close to zero R1D. (the smallest value of Rp/AD. for which com-
putations were done was 0.2 the question of whether the current collection be-
comes orbital-motion-limited, i.e. reaches this maximum value, for any non-zero
values of Rp/XD cannot be definitely settled without an asymptotic analysis
of the problem ?or small Rp/AD.; such an analysis is beyond the scope of this
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researc.,h,. £or,_over, thi.s questl.Aor is of academic interest only since the
result for zero Rp/?\D_ is irnjwn lan the residual uncertainty for very small

Figure 25 shows electron current as a function Of /R fo
eO /RT, 25 arnd values offTT of 0, 0.5') and 1. Once again,, 'the tr&pped-
or it bona is shwn. Thie cerresp-vonding inonc-energetic current results are
als'o shown. The planar-sheath ;4pP.-OXiMati,..n to the result for large RPAD-
aad '2L,/T n- (Appendic, s P. J) is alsco shown,- in spite of the fact that the
Maxwellian an.-d nonio-enceti ' u~e oi, 0/' are indistinguishable in this

d~~iagram~ fo 'alvle ( \T/-.i SOI&b oe hat only the Max-
welliari curve has the pl&-nar- sheath appjx-;oxiiraticn as an asykmptote. The curves
for T ,,/T.. =0 incl~ude thr; e:Ad poin:t at, ?'Uip = C, since the -limiting result

i.. . is kxnown (S3ec. XI1).

The electron curent reul!ts of Fig. 25 are shuwn again in Fig.
26, plotted as functionis of'R/?J in:stea5. of \D.JR p* As noted earlier in
-.cnnection with Fig. 2,. the electron current decreases more rapidly as -1X,
increases when the ions are at a lower tem-verature. Th-,is occuirs because the
ions are in this case the rexp 1le6. species, for lower values of their tempera-
ture a smralli. L- er ara~uat o-P the fec tY.,e probe is able to penetra-te past thbe
sheath edge into the plasna X$~. 111) -;td attzact electrons to the proje. As
no,%ted_ earlier in connection with Figs. ilk and 16, if the t-emiperature of the
repelled .pecie-- is 3.owerea. -oihile thc att racted- species parameters are held con-
stant. th-,e -shealh edge 'Celds to sharpen sn the repel31led particles are now,
tvxned back~ by a smaller rise. inj,.r1i1 As a resuLet. the potential well
sul-roundin,r 'the probe steepenz and.cnrcs fewer particles enter ti el
cur.L-fCt co'Thcction decrea.A.is

Once again, es m zation~d in connection with Fig. 24, the precise
dependence of cvrrent on IRp/ .D_ for vaiues near zero cannot 'is determined with-
outc an aSymptotic avalysis for cases nea!' this .1irtit. In particular, when

T+,/- =0) the tehaviou:r of the sneath edge radius as RV'D -0 is a very in-
-Iived questiocn. As before, the ttnis;rvs to these questions are of' very minor

impo ,.rnce in determini-ag current-o2 X.:tio s~rnce t6he limtiting result is
knuwn.

igiuxe 21ja shows ion and electrop ei~rnts as functions of
T+/T. for various atiirtctirg probe anden'rj&Lls and10. Hano-energetic
rul-s with fin~ite collection of the repellrid particles, and the sirVA. -id

case based on the assum.Aiin of zecro ce11lction of these particles, axre bo-th
shown; the latter cor.'espoadi to the use ol" the simplified relation (13.11) for
electron deflsity. Current Zoll._ctior values for eo /kT - -10 obtained fror.
the tabiil&ted resuts of Uern:stcin and Rabinowitz ("Ref. 21) are shown circled
for comiparison. They r.x s'e to Join smoothly on to tohe mono-energetic resuts
comuted here for iarger 'alues of ion teriperature. The most striking feature
0.1 these A-esults i~ hta o oelectron temperature ratio T+/T- is de-
creased, the iort cullection pasiei through a ininirnum, then increases very
rapidly as T+/T_ appr'v'ches ziri. Tlot reason for this buhaviour is thAx uz
ion temperature decreases, thle dominant influence is at; f2.rst the decrease of
ion therma] mtion and the re, Core ion random3 f~l;.x, as ion temperature decreases
further, the absorptiun radii ditxu.,sed In Sections VIII and XXII move nutward
to infinity, slowly ht C ir -t, then very rapidly, so that the increase in ion
coll~ection volume becokaers tte. doa'in~ut inftueuce. The reason why this behavio-.Ar
occurz has also bean: di.-cujsed in 1S.I.- XIII. On the other hand. the elect&-on
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collection for positive probe potentials is seen to be a smoothly increasing
function of T+/T_. Since the points corresponding to T+/T. = 0 are calculated
using a different solution scheme (Program 2; Appendix I) than those correspond-
ing to non-zero values of T+/T., these results also furnish a check on the
correctness of both programs.

Figure 27b shows ion or electron collection as a function of
probe potential for T+/T. = 1 and Rp/XD. = 100. This diagram has been plotted
for the cases of Maxwellian attracted particles and mono-energetic attracted
particles with and without collection by the probe of repelled particles. In
the latter case the distribution of repelled particles again corresponds to
the simplified model of Eq. (13.13). The difference between these results for
mono-energetic attracted particles is typical of all corresponding results
obtained for both the spherical and cylindrical probes, though it is smaller at
lower values of RA D . The reason why the current in the case of non-collection
is increased relative to its values in the case of collection has been discussed
in Sec. VIII. It,is due to the fact that the assumption of zero collection re-
sults in an increase in the density of the repelled particles adjacent to the
probe and decreases the steepness of the potential near the probe, allowing
more of the attrs,'ted particles to reach it.

In order to illustrate more clearly the behaviour of the ion
current, this quantity is plotted again in Fig. 28, as a function of both
TST._ and probe potential for RpRD.= 10. As explained in connection with
Fig. 21, the zero-temperature result is of the required accuracy for the com-
pletely absorptive probe assumed in this research only in the range eo/kT.e. -5.
Accordingly, this curve is not drawn for probe potentials closer to zero. The
non-monotonic nature of the dependence on ion temperature is again visible, as
in Fig. 27a. The curve for T+/T. = 0.1 extends only to eo/kT. = -10 since the
computation scheme proved unable to carry out these calculations at larger probe
potentials (Sec. XIII; Appendix H) Accordingly, the regions between T+/T = 0
and 0.25 of the curves corresponding to values of -eop/kT. of 15,20, and 25,
have been plotted on the basis of the expected behaviour of these curves,
using as guides the curves shown for smaller values of -eop/kT, as well as
the mono-energetic curve shown for -e~p/kT. = 25. Results for mono-energetic
ions are shown for T+/T. - 1 and for eo/kT. = -25. The trapped-orbit boundary
is also shown.

Figure 29 shows electron current as a function of probe potential
for Rp/AD. = 10 and values of T+/T. from 0 to 1. The manner in which the curves
for decreasing values of T /T. depart at progressively lower probe potentials
from the result for T /T. = 1 is because of the progressively smaller probe
potentials at which the electron sheath begins to form as T /T. decreases.
Again, the trapped-orbit boundary is shown; as indicated earlier, the location of
this boundary corresponds to the smallest probe potential for which trapped
orbits exist, for given values of T+/T. and Rp/D.

'"he trapped-orbit boundary locations plotted in the preceding
diagrams have been summarized in Figs. 30 and 31 for negative and positive probe
potentials, respectively, for values of T/T. from 0 to 1. The boundary for
T+/T. = 0 in Fig. 30 is shown as a dotted line in the range 0 < -e p/kT. -5
since this curve is based on solutions of the Allen, Boyd, and Reynolds equation
(Appendices G, I) corresponding to the equilibrbm distribution (13.13) for
electrons. Also, in Fig. 30, it is evident that the trapped-orbit boundary
location, like tiac ion current, L not a monotonic rAnction of T+/T.. The fact
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t hut ti.~u bt owidaries showvn i~n Y'igs. :39 and 31, aLs well as those for the
~ ar.1, ar _ i.ot ext-ended to' zero probe potential iJs because

*.r ~yc 'ugr ~pte rts w:e arredour, Jn ifV 5C ranges of' pa-rameters tlo
-r.,;ncoP!_ete dnor-mat--.on a ooui th~e quanitity of pri.rrary importance, the

llu ; cor-nIete:; !thle dszso±of tiie results corrputed for the

Xv.L D ~'blCJ- ON :;c:_~0h

i;n. ,-o to a dic' ruscs1on of' the crnrputed resul ts
th -"l prb ofn-cl, are hwnin r1 .Es, 32 to 52. The senera"i re-

wiri,.. th, 1"i~ fse.X also aply tc; the presentation of 4these
re;U i'vc o~~. . su'.t rl-ted_ in Figs. 39 to h9 are also n -r-

.Laen a.tn% charced~w t distributionrs shown irn Fiks
c:r. (e o: ?.e., r esp i','eiy, to t'%os-e of' ti~s 16 o for- the sphere.

'Wt tthe .SpheifC prob, all c' these d iagran:,s show the l arge r
~he zb~tesin tocth lizteotial and charge derisityj created by the

pr~r~of the i',lindrical l'~e igu.T. 33- i*-n coinoariszon ,%Flth Fig. 1)-4 shows
~nr is. th. attracted uart ic.Lef nea-r the oro'tc at low valuaes

r. i" . r~ua~ethe -xlreoc ed, by -the inward-mvi p- tile
dl,ease s mr'oe c h ylindi.-icai geoilne-try as they inove toward the probe,

a-'6 3 shows vue-i vs :cac ius f or R/n 10. for vle
0 n n o ats &/T f-,-,-10 and. -25. it has

ree:1 hwnIn S-ec. XIII, thait for or>eegcti- ions the form of the potential
a gt radiu.S '--me 'm-e hal. heimt as T ±!T C) 0. These results

fcr ully Maxwellian plasm3 s how the same0 effect. Correspord-1dig chiarge den-
:itJes are plcotted asL functions of radius~ 0 Ficg. 37, for the sane values of'

Rp/ nrd T 1 ' ard orvlues of e~p/ : Y of -0.1, -3 , and- -25. 'The chlarge
d :-s -;t: Les are a.iso nhs;erzed to have a .-% gr-adual'dependence on radius when

Sheath edge tbicinc-s- is i.n Fig. 38 as a function o-, both
oroe ntenia ard ?/R fo T./T - ) poitive values of probe potential.

e t he t ae .-f* zero-tem-Tpe-rat;ure -,ole artaclFes, corresponding to Fig.
19 for the shr.Comarisc of these two dliagrams shows that the sheatt e dge
always lies farther from the nrobe in the cylindrical case for the same values
of pvc-be po'te-ntia2 anal ,D_/1%1. One ieason for th.is is that, as shown in Sec.
X~ if'he repelled parti cles -are at zero temperature, none of the elect-ic
field deto the probe's presenica can penetrate past the sheath edge into the
plasma. This means that the total ret space charge in the sheath rrust exactly
cancel the charge on the probe. In the cylindrical case, the sheath volu,,me
per iun it probe surface area is 11callr for a given sheath thickness because ofl
the setC4ry. The sheat;h edge mu_-st -herefore tend to lie farther fromn the
Prot, c.

Figre 8 aso ho~s pxt f-he trapped-orbit boundary. The

portio-n of this boundary corresp onding to smaller values of ?. ~is. .7ot shown
beca*,;.;e t he compuitE.r nrograni, was ualeto produce results in this region
(App-indix .1). Thisz trbe-uh o v. -ry, and all others shown on d4 agrar.s
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which refer to the cylindrical probe, refer only to the inner family of trapped
orbits discussed in Sec. VIII.

Ion or electron current is plotted in Fig. 39 as a function of
probe potential for T+/T_ = 1 and various values of Rp/AD., corresponding to
Fig. 20 for the sphere. In comparison, the current collection for the cylinder
increases considerably more slowly with increasing probe potential. In contrast
with the sphere, it remains orbital-motion-limited at non-zero values of Rp/XD. ,
For instance, the curve for Rp/D = 2 in Fig. 39 coalesces with the orbital-
motion-limited result (Eq. 14.5a with 7r6 = 1) at eop/kT. = t 2.9. Figure 50b
may be used to verify this value. Figure 39 also shows the trapped orbit boundary.

Figure 40 shows ion collection as a function of probe potential
for T+/T. = 0 and various values of Rp/?\D. This diagram corresponds to Fig.
21 for the sphekid, except that the correct form of the electron distribution
for small probe potentials has been used in the cylindrical case. Another
difference between the two diagrams is that current collection for the cylinder
remains finite in the limit RJ D _- 0 and becomes orbital-motion-limited for
non-zero values of R /D as this limit is approached. The result in Fig. 40
corresponding to Rp/ D = 0 is that of either Eq. (14.5a) or Eq. (14.6b) with
v6 set equal to zero.

Electron collection is shown in Fig. 41 as a function of probe
potential for various values of Rp/XD and fy± T+/T. = 0, i.e. for the case of
zero-temperature repelled particles, corresponding to Fig. 22 for the sphere.
Part of the trapped-orbit boundary is shown/, The reason why a section of it is
not shown has been discussed in connection/with Fig. 38 which corresponds to the
same cases as those of Fig. 41. As in th spherical case, for increasing values
of Rp/XD. the electron collection initially decreases more rapidly when the ions
are at zero temperature than when they aie at electron temperature. In contrast
to the results shown in Figs. 39 and 40,,/current collection in Fig. 41 is equal
to the orbital-motion-limited result only in the limit as Rp/D. -+0. The rea-
son for this is that the orbital-motion-limited current cannot be attained in
the presence of a zero-potential sheath edge at any finite radius (Sec. XII).

In order to display more clearly the behaviour of the current at
small Debye lengths, the ion or electron collection has been plotted in Fig. 42
as a function of D/R for T+/T_ = 1 and various values of probe potential.
Trapped-orbit and orbital-motion-limited current boundaries are shown. The me-
thod of obtaining the location of the orbital-motion-limited current boundary
from the computed results is described later in connection with Fig. 50a. As
is the case with the trapped-orbit boundaries, all orbital-motion-limited
current boundaries shown in this and subsequent diagrams refer to a fully Max-
wellian plasma, with the understanding that zero-temperature attracted particles
are included as a special case.

The corresponding dependence of ion collection on D./Rp for
T+/T. = 0 is shown in Fig. 43 for various probe potentials. In comparison with
Fig. 42, both the trapped-orbit and orbital-rtotion-limited current boundaries
in general lie at larger values of Rp/xD. for any given probe potential.
Figure 50a and 50b also show these boundaries. The kink in the current-collection
curves of Fig. 43 occurs because when the attracted species is at zero temperature,
it is mono-energetic, and the discussion in Sec. VIII applies.
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-~ ne ~LU.~ i It/'~2 , ~tif . in corntrast with Fig. 23,
%hich show. the coXre Jor.ding r'e!L.t, I',)r the sphere, tr ion current is bouneQ
at large values of' AD./Rp and small values of T+/T., for any given probe potential.
Current results for mono-energetic ions are shown for comparison;once again,
the result for T+/T. = 0 is a member of both the Maxwellian and mono-energetic
families of results. There is seen to be a range of values of D /Rp in which
the current collection at fixed AD./RD is not a monotonic function of T+/T.o
A detailed comparison of Figs. 42 and 43 shows that this occurs only for values
of -ep/kT_ greater than about 10. The trapped-orbit boundayi also shown,

Electron collection results have been plotted in Figs. 45 and 46
as functions of D/Rp and R /D , respectively, in order to illustrate the
behaviour of the current collection for both small and large Debye lengths.
These results are plotted for eop/kT_ = 25 and values of T+/T. of 0, 0.5, and 1.
These diagrams correspond to Figs. 25 and 26 for the sphere. Figure 45 shows the
trapped-orbit boundary in incomplete form since its location for T+/T = 0 is
not available, as discussed in connection with Fig. 38. As in Fig. 25, the re-
sults for T+/T_ = 0 in Fig. 45 include the end point for Rp/\D. = 0 since the
limiting result i_ = 1 is known. Current collection for Maxwellian electrons
based on the planar-sheath approximation is also shown again in Fig. 45. Figures
45 and 46 also show corresponding current collection results for mono-energetic
electrons. In contrast to the spherical case of Fig. 26, current collection for
non-zero values of T+/T_ in Fig. 46 is seen to be orbital-motion-limited, i.e.
not a function of Rp/AD_, over a non-zero range of Rp/AD_°

Figure 47 shows ion collection for eq/kT = -25 and electron
collection for e /kT. = 25, as functions of T+/T., ror Rp/A D  = 10. Results
for mono-energetic attracted particles are shown for comparison. The Maxwellian
and mono-energetic ion current results are seen to coalesce as T+/T. -+0, as
must be the case (Sec. XIII). Since the electron collection result for a posi-
tive probe in the limiting case T+/T. = 0 is calculated by a different program
(Appendix I) than the results for non-zero values of T+/T., the fact that these
results are seen to join smoothly in Fig. 47 serves to verify the operation of
both programs. We also note that the ion current for the negative probe is
equal to the electron current for the pooitive probe when T+/T. = 1, as it must
be (Sec. III).

Ion collection is shown in Fig. 48 for Rp/?D. = 10 as a function
of both T+/T. and probe potential. This diagram corresponds to Fig. 28 for the
sphere. The trapped-orbit boundary is shown, as well as the current collection
for mono-energetic ions for T+/T_ = 1 and for e '/kT. = -25. In contrast with
Fig. 28, the ion collection is seen to be a mono.onic function of ion temperature
for the cylinder for Rp/An = 10; the fact that this is not true for some values
of Rp/D has been noted in connection with Fig. 44. The curve for T+/T_ = 0 is
seen to be complete in the cylindrical case, unlike that for the sphere.

Figure 49 shows electron current as a function of probe potential
for Rp/D = 10 and values of T+/T. from 0 to 1. This diagram corresponds to
Fig. 9 for the sphere. In comparison, the increase in current collection with
probe potential is smaller in all cases, and the inner family of trapped orbits
(Sec. VIII) occurs at smaller probe potentials in the cylindrical case than
trapped orbits occur in the spherical case.
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Tappedarbit and orbital-motion-limited current boundaries are
plotted in Fig. 50a for an ion-collecting probe for values of TO/T. of O, 0.5,
and 1. This diagram corresponds to Fig. 30 for the sphere; in contrast, the
trapped-orbit boundary position is for nearly all values of probe potential seen
to be a monotonic function of T+/T. in the cylindrical case. In this case,
trapped orbits also exist at larger values of Rp/AD. than in the corresponding
spherical case; this is because the potential in the cylindrical case is
generally more shallow in form (Sec. VIII). Another difference between Figs.
30 and 50a is that in the spherical case, no orbital-motion-limited current
boundaries are shown since there are no non-zero values of R/XD. for which
this amount of current is actually collected; a discussion of the reasons for
this difference appears in Appendix E. These bounuaries have been obtained in
the cylindrical case by obtaining as computer output for a sequence of cases
the value of the maximum energy level for which current collection is not
orbital-motion-limited (Sec. VIII; Table 3) and extrapolating this result to
zero as a function of either probe potential or R /XD . Figure 50b shows the
data of Fig. 50a plotted on a larger scale in Rp/ D to show more cle~rly the
location of the orbital-motion-limited current boundaries.

Figure 51 shows the same boundaries as those of Fig. 50 in the
,,,case of an electron-collecting probe. This diagram corresponds to Fig. 31 for
the sphere. The trapped-orbit boundary for T+/T. = 0 is incomplete as in Figs.
38 and 41. The boundaries for T+/T. = 1 are the same as those for ion collection
in Fig. 50, as they must be (Sec. III).

It is clear from examination of the preceding diagrams that
much of, the information computed here for both the spherical and the cylindrical
probes is in the region where trapped orbits exist. The fact that populating
these orbits in any particular case is likely to cause a decrease in the attracted-
species current has been pointed out in Sec. VIII. Since no quantitative pre-
4ictions exist of the magnitude of these effects, it is evident that theoretical
or experimental investigation of them would be of great value in finding out
whether in any given situation they appreciably affect the current collection.

It is noteworthy that Bernstein and Rabinowitz (Refs. 5 and 21)
were sufficiently concerned about this problem to forego carrying out their
mono-energetic calculations in the trapped-orbit region. However, important
cases are believed to exist in which the population of these orbits will be
negligible (Sec. VIII); the obtaining of these results was accordingly considered
to be a worthwhile task.

This completes the discussion of the computed results of this
investigation. As noted in Sec. XV, these results may be applied by scaling
of the appropriate parameters to situations involving multiply charged ions
and values of T+/T. greater than 1.
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xvII. C o TH U2 AL !M AT U.T.I.A.8.

The theory and numerical calculations which form the subject of
this investigation have been carried out as part of a coordinated project in
the development of plasma diagnostic techniques at U.T.I.A.S. As part of this
project, experimental work closely related to the work described herein has
been performed by Graf (Ref. 3) and Sonin (Ref. 4). Results of this combined
investigation have also been reported in Ref. 19.

Reference 3 reports the results of a comparison made between
Langmuir probe and microwave measurements on the subsonic portion of a free-
expansion argon plasma jet. Figure 52, which has been obtained from the re-
sults of Ref. 3 as they appear in Ref. 19, shows a comparison of electron num-
ber density results obtained using these two techniques. The Langmuir probe
measurements used in constructing this diagram were made using a cylindrical
probe of large length-to-diameter ratio aligned parallel to the local flow
direction; numerical results which appear in Table 6 were used in calibrating
this probe.

Reference 4 reports the results of experiments undertaken to
compare the experimentally measured current collection of cylindrical probes
with the results of this investigation (Table 6) and with results obtained from
other theoretical formulations (Sections I, V, XIII). These probes were used
under essentially similar conditions to those mentioned above in connection
with Ref. 3. Figure 53 is reproduced from Ref. 4. This diagram corresponds to
a situation in which the ion to electron temperature ratio was nearly zero
and shows ion current Ii measured at 10 dimensionless units below the floating
potential Xf, plotted as a function of (R$ D)2 Ii(Xf-l0) where RP/?\D is in Fig.
53 the ratio of probe radius to electron bebye length. Numerical results of
this investigation, and results calculated by Chen (Ref. 8) are shown for com-
parison. It is seen that at larger values of the abscissa in this diagram, the
experimental results give good agreement with the theoretical results obtained
here rather than with those of Ref. 8, which are based on the zero-angular-momentum
or radially-inward-motion assumption for zero-temperature ions. The implications
of this assumption have been discussed in Sec. XIII; the experimental data shown
in Fig. 53 therefore amount to a verification of the assumption made here in
this investigation that the zero energy ions have a uniform distribution of
angular momentum far from the probe. In other words, their distribution is
correctly predicted by the zero-energy limit of the mono-energetic distribution
(Sec. XIII).

It is also seen in this diagram that the experimental points de-
part from the theory at the point where the theory predicts that the current
becomes orbital-motion-limited and no longer increases. This effect must almost
certainly be a collisional one; it means that a significant number of ions pre-
sumably undergo collisions while orbiting by the probe and are deflected so as
to strike it when they would otherwise miss it. The purpose of this investigation
has been to explore the implications of a collisionless theory, and calculations
involving collisions are beyond its scope. However, this diagram illustrates
the fact that it is possible to find some situiations in which the collision.-
less results are much more sensitive to the presence of collisions than in
other cases.
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The foregoing questions are discussed in more detail in Refs. 3
and 4, which also contain complete descriptions of the experimental procedures
involved. Reference 19 has been written as a summary of some of the results
of this combined research program; it also contains further information on the
relationships between this theory and the experiments just described.

XVIII. CONCLUDING REMARKS

A method has been developed and used to obtain theoretical pre-
dictions of the current collected from a collisionless, fully Maxwellian plasma
at rest by an electrically conducting Langmuir probe having spherical or cylindri-
cal symmetry; the results for the cylinder have the advantage of being appli-
cable to an aligned probe in a flowing plasma. The probe characteristic has
been determined for both spherical and cylindrical geometries for probe radii
up to 100 times the Debye shielding distance of the hotter species of charged
particle, for a complete range of ion-to-electron temperature ratios, and for
probe potentials from -25 to 25 times the thermal energy of the hotter species.
Results have been presented explicitly for temperature ratios in the range
0 < T+/T. < 1, and it has been indicated (Sections IX, XV) that results for
greater values of T+/T. may be obtained from these by scaling the appropriate
nrndimensional parameters. Each current collection result has been computed
to a relative accuracy of 0.002 or better in an average time of approximately
two minutes on the IBM 7094 at the University of Toronto.

Maxwellian velocity distributions and finite current collection
have been assumed for both ions and electrons. The key to the construction of
a workable computation scheme has been the replacement of the infinite plasma
by an outer boundary at a finite radius, beyond which a power-law potential is
specified. Experience with the computer program has in most cases shown that
the computed results are remarkably insensitive to the precise location of this
boundary, so that it may be placed relatively close to the probe surface, at a
major gain in computation economy without appreciably disturbing the results.

The problem defined by these assumptions is expressible as a
nonlinear system of integral equations, which has been solved numerically by an
iterative scheme involving a sequence of successive approximations to potential
and charge density distributions. An extension of the method of Bernstein and
Rabinowitz (Refs. 5, 21) has been used to provide charge densities for ions
and electrons at each step in the iterative process. The iteration has been
found to be divergent in general, and convergence has been forced by modifying
the computation scheme to provide mixing of each successive charge density re-
sult with its predecessor, The procedure does not assume any a priori separation
into sheath and quasi-neutral regions.

Calculations based on the assumption of a mono-energetic distri-
bution for the attracted particles have been made within the framework of this
computation scheme, in order to provide explicit comparison with the results for
a fully Maxwellian plasma, and to provide an efficient first approximation for
computations with the Maxwellian plasma. In general, the results based on the
mono-energetic model have been found to be a good approximation to those for the
Maxwellian plasma for values of Rp/D greater than about 5 but show marked
deviation from them for smaller values of Rp/ND. (Figs. 23 to 26, 44 to 46).
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It has also been shown that the difficulties encountered by
Bernstein and Rabinowitz (Ref. 5) in computing the ion current for the cylinder
in the zero-ion-temperature limit are illusory, and that the computations of
Chen (Ref. 8) for this case do not take into account the fact that the ion
temperature acts as a singular perturbation.

Experimental results by Sonin (Ref. 4), using a cylindrical
probe have been cited in Sec. XVII to indicate that even in the zero-ion-
temperature limit, the current collection appears to be correctly predicted
by the assumption of a uniform distribution in angular momentum as made here,
rather than by the radially inward motion assumption made by Chen (Ref. 8).
It is also pointed out in Sec. XVII that an exception to this occurs for values
of Rp/XD in the orbital-motion-limited range, where the ion collection rises
above the orbital-motion-limited value and hence disagrees with either theory,
apparently because of collisional effects (Fig. 53).

Although the computation scheme used in this investigation to
obtain results in the general case has been found to break down in certain
extreme ranges of the plasma parameters, modifications or simpler theories have
been found to give end-point data at nearly all of these limits, particularly
when either the repelled or attracted species is at zero temperature (Sections
XII, XIII, Appendix H). In the case of zero-temperature repelled particles,
the modifications involved a major effort and allowed results to be obtained
in an area in which up to now, even for the simplified case of mono-energetic
ions, no results exist in the literature.

Computed charge density and potential distributions, as well as
trapped-orbit and orbital-motion-limited boundaries and certain other informa-
tion, have been presented graphically. Computed probe characteristics have
been presented in both graphical and tabular form (Sections XV and XVI, Tables
5 and 6). A listing is included of the Fortran programs used to obtain these
results (Appendix I).
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TABLE 1

Maximum Number Density N.ax. of a Species of Charged Particles Whose Scattering

Distance Sd is to be Larger Than One Probe Diameter.As aFunction if p/ and T

RpIID ga.T = 1030K T = 2 x 10O4CK

2.5 6.34 4.3 x 1153.5 x109

10 0.712 5.5 x i01-3 4.4 x 1017

100 0.0415 1.85 x 1011 1.48 x 1l



TABLE 2

Asymtotic Potentials at Large Radius

Spherical Cylindrical
Symetry Symetry

Unshielded 0 a r-I  Logarithmic
Coulomb Potential Divergence

ee -r/D
Debye Shielded 0 a r

Ptential r

-2 -1
Current-Collecting 0 a r 2  a r

Probe

Current-collecting a r_4  0 a r 2 / 3

Probe; Attracted
Particles at Zero
Temperature

MMO



TABLE 3a

Partial List of Correspondences Between Text Symbols and

Fortran Variable Names

Text Reference Text Fortran Program Reference
Symbol Variable

Name

Eq. (9.1) x X Main Programs 1 and 2 and
Related Subprograms

x2  XSQ

Eq. (D.2) s S

Eq. (D.2) dx/ds DXDS "

r/Rp ROP FF1 362*, 256*

f X SCOT FF1 18*, 255*

Eq. (5.1) M(r) COOK Function COOKIE

Eq. (9.1) X XI Main Programs 1 and 2 and
Related Subprograms

Eq. (D.2) dX/ds DXIDS

Eq. (9.1) ETA

Eq. (9.7) 1+ ETAPS Subprograms Charge, Chamon,
Cal

Eq. (9.7) MANG "

Eq. (E.28) I oMG "I

"PG BETAG

Eq. (E. 29) CO ALFAG

Eq. (E.31) 6G EPSG FUNCTIONS CHARGE, CAL

APPENDIX D YK 0IK1  Y Main Programs 1 and 2,
FFN 33,38, 34

APPENDIX D y Y Function CAL, FFN 290

Eqs. (D.21) Y Z Main Programs 1 and 2,
FFN 34, 35

FFN- Fortran Formula Number * Nearest Numbered Formula



TABLE 3a
(continued)

Text Reference Text Fortran Program Reference
Symbol Variable

Name

Figure 5; If sH, sL SH Subroutine Charge,
the value of s FFN 320
at point D is
the value of the
Fortran Variable
S(I), Then the
value of S at
Point L is the
value of SH(I).
It follows that
SH is Stored in
SH(l)

PI Main Programs 1 and 2,
FFN 101

dSQTPI
1/7r VIPI

SAY

Eq. (D.21) As DELTS Main Programs 1 and 2,
FFN 16*

Eqs. (3.2), (9.1) 7+ GAMMA Main Programs 1 and 2

r3  P13

7-6  P16

sB  P

i+ YPOS

i YBEG

Figure 5b, 6alOb PH BETH

Figure Ia PC BETH

-PH -OC
a ORe EXY

Smallest and SW, SWA Subroutine Charge
Largest Values
of s at Which
Locus of Extrema
Enters First
Quadrant



TABLE 3a
(concluded)

Text Reference Text Fortran Program Reference
Symbol Variable

Name

Values of 0 corre- BETAW, Subroutine Charge
sponding to above BETAWA
values of s I

Smallest and larg- SCRIT, Subroutine Charge
est values of s at SCRITA
which maxima occur
in locus of extrema
Coordinate indices LK, LKA

corresponding to sfiallest
values of s, if any,
for which the point H
in Figs. 5 and 6,
corresponding to the
cutoff boundary tan-
gent at s, is not in
the first quadrant

Eqs. (E.45),(E.67) 9AMU Fuctions DYO, TRY

Eqs. (E.45),(E.67) 0 THETA Functions DYO, TRY

Eqs. (9.4),(11.7) OM ENG Subroutine Chamon,
FFN 535, 536

- Eq. (9.1Ob) +. YPN Ma4n Program 1, FFN 357

Eq. (13.6a) i* CURRNT Main Program 4

Appendix D (dX/dx) sO EDGE Main Programs 1 and 2

Fig. 8 Case LINK Subroutines Charge,
Number First, Second, Third,

Fourth (Sphere and Cylinder)

Eq. (E.3) K CAPPA Fnctions DUO, DYO

Eq. (E-5) %JAMDA Function TRE
IBH Function TRY

Ratio of largest fkRIT Subroutine Charge, FFN 234
Trapped-orbit LRTRAP Subroutine Charge, FFN 241,
radius to Rp Subroutine Chamon, FFN 481*

Ratio of largest STRAP Main Program 4, FFN 99*
Trapped-orbit radius
to WD.



TABLE 3b
Partial List of Correspondences Between Text Equations and

Fortran Formula Numbers

Text Equation Fortran Formula Program Reference
Number

(9..4),(13.1c) 535 Subroutine CHAMON
(5.1),(9.7) 4o Main Programs 1 and 2

(9.8) 103* Subroutine CHARGE
402* Subroutine CHAMON

(9.10b) 357 Main Program 1

(9.16) 16* Main Program 1
102 Subroutine CHARGE

(9.15) 706*, 712* Subroutine CHARGE
331*, 328* Subroutine CHAMON

(11.7),(13.2c) 536 Subroutine CHAMON
(12.5) 750 Subroutine THIRD (Sphere)

(12.6) 1)8*, 746* Subroutine THIRD (Cylinder)
(13.1a) 438, 44o, Subroutine CHAMON

444, 446,
452, 454

(13.16) 456 Subroutine CHAMON
(13.2a) 439, 441, Subroutine CHAMON

445, 447,
453, 455

(13.2P) 530 Subroutine CHAMON

(13.3a) 446, 452 Subroutine CHAMON

(13.4a) 447, 453 Subroutine CHAMON

(13.13), 27*, 42*, Main Program 4
(13.14) 48*, 177*

(14.1),(E.43) 751, 204 Subroutine THIRD (Sphere)
(14.2),(E.94) 18o*, 204 Subroutine THIRD (Cylinder)

(D.2) 33 Main Programs 1 and 2
(D.7),(D.8) 39*, 39 Main Programs 1 and 2

(D.10) 326 Main Program I.
(D.11) 325 Main Program 1 and 2
(D.12) 281 Main Programs 1 and 2

(D.15),(D.16) 285*, 285 Main Programs 1 and 2
(D.18) 331 Main Program 1
(D.19) 330 Main Programs 1 and 2

* Nearest Nimbered Formula



TABLE 3b
(continued)

Text Equation Fortran Formula Program Reference
Number

(D.21) 34, 35 Main Programs 1 and 2

25, 32 Main Program 3

(D.22) 332 to 337 Function CAL

(E.3) 501* Function DUO
205* Function DYO

(E.5) 401* Function TRE
35* Function TRY

(E.1) Function UNO

(E.2) Function DUO

(E.4) Function TRE

(E.1O) Function DYO

(E.11) Function TRY

(E.17),(E.42) 176, 751 Subroutine THIRD (Sphere)

(E.17) 176,745,180* Subroutine THIRD (Cylinder)

(E.18) 177",571,204 Subroutine THIRD (Sphere)
177 , 571, 204 Subroutine THIRD (Cklinder)

(E.19) 552*,552, Subroutine FIRST (Sphere or
551 , 560* Cylinder)

(E.20) 552*, 556, Subroutine FIRST (Sphere)
560*, 562
552*, 556, Subroutine FIRST (Cylinder)
571, 573,
560*, 575*

(3.21), Function COEFT
(E.22)

(E.23) 305 Function UNO

(E.25) 506 Function WO

(E.27) 406 Function E

(3.30) 126* Subroutine CHARGE
126 Subroutine CHAWN

(3.31) 126 Subroutine CHAROE
(E.32),(E.33) 221, 292 Function CAL

(E.34),(E.89) 560* Subroutines FIRST
58M Subroutines SECOND

750,180' Subroutines THIRD
320' Subroutines FOURTH



Text Equation Fortran Formula Program Reference
Number

(E.35) ,(E.90) 562*,575* Subroutines FIRST
750 ,746* Subroutines THIRD
370, 375* Subroutines FOURTH

(E.36),(E.91) 226, 310 Function CAL
(E.39) 177, 177* Subroutine THIRD (Sphere)
(E.44) 200,190,84 Function DYO

(E-52) 10* Function DYG

(E.53) 50 Function DYO

(E.57) 125* Function DYO,

(E.58) 116* Function DYG

(E-59) 102* Function CDO

(E.60) to (E.65) 199 to 216 Function DYG

(E.66) 19, 72, 73 Function TRY
(E.69) to (E.72) 4o to 16 Function TRY

(E.73) 22* Function TRY

(E.76) to (E.78) 41 to 501 Function TRY

(E.82) 508s 509 Function TRY

(E.84)$ (E.85) 525 to 510 Function TRY

(E.86) 316* Subroutine CHARGE
317 Subroutine CHAMON

(E.87)0(E.88) 221, 294 Function CAL

(E.92) '177, 571 Subroutine THIR (Cylinder)
(F.9) 30* Main Program 3
(F-15) 25%32 Main Programn 3
(F.16) 23 MainProgram 3
(G.14) Subroutine POWERS
(G.15) 14o to 152 gain Progra 4.



TABLE 4

Suggested Computation Net Spacings and Outer Boundary Radii for Use With

Program 1

Sphere: T+/T. = 1 ; Xp = 25

Rp/XD. As Points RL RB - RP
Per ND dXr=Rp SB Rp A
at Probe D

0.5 .0667 30 -1 2.8 16.44 7.7
1 .05 20 -1 2.4 11.02 10.0
2 .0333 15 -1 2.0 7.39 12.8
5 .0133 15 -1 o.80 5.00 20.0

10 .01 10 -1 0.72 3.57 25.7
20 .005 10 -1 0.56 2.27 25.5
50 .005 10 -2.5 0.56 1.64 31.8

100 .005 10 -5 0.50 1.4o 40.3

Cylinder: 0 < T+/T. < 1 ; Xp_ = 25

RP/D As Points (ds\ RB BR
PerD\ x/ = Rat Probe

1 .025 40 -1 2.9 18.17 17.2
2 .025 20 -1 2.3 9.97 17.9
5 .01 20 * -l 0.80 5.00 20.0
10 .01 10 -1 0.72 3.57 25.7
20 .0067 7.5 -1 0.60 2.50 30.0
50 .01 5 -2.5 0.56 1.64 31.8
100 .01 5 -5 0.56 1.53 53.4



TABLE 5a

Spherical Probe; Ions at Zero Temperature; Electrons Not Collected by Probe Surface;
Ion Currents Obtained from Solution of the Allen. Boyd and Reynolds Equation

Rp/ND. = 0.5 Rp/?D_ = 0.75 Rp/ND. = 1.0 Rp/AD. 1.5

0.3136 4.oooo 0.1250 1.7778 0.0563 1.0000 0.0145 o.4444
o.8115 8.0000 0.3575 3.5556 0.1767 2.0000 0.0525 0.8889
1.4094 12.0000 o.654o 5.3333 0.3393 3.0000 O.1088 1.3333
2.0770 16.0000 O.9970 7.1111 0.5339 4.0000 o.1807 1.7778
2.8011 20.0000 1.3787 8.8889 0.7557 5.0000 0.2663 2.2222
3.5843 24.o0oo 1.8017 lO.6667 1.0076 6.0000 0.3678 2.6667
5.2656 32.0000 2.7292 14.2222 1.5718 8.oooo 0.6035 3.5556
7.0923 4o.OOOO 3.7614 17.7778 2.2163 10.0000 o.8865 4.4444
10.56 54.0000 5,.77 24.0000 3.50 13.5000 1.482 6.oo0o
12.15 60.0000 6.69 26.6667 4.1o 15.0000 1.769 6.6667
17.8113 80.0000 10.0603 35.5556 6.3338 20.0000 2.8855 8.8889
23.9553 100.0000 13.7698 44.4444 8.8363 25.0000 4.1972 11.1111
30.4775 120.0000 17.7467 53.3333 11.5497 30.0000 5.6611 13.3333

26.4155 71.111 17.5429 40.0000 9.0028 17.7778
24.1979 50.0000 12.8173 22.2222
31.3254 6o.oooo 16.9775 26.6667

26.3051 35.5556

Rp/AD. - 2.0 R/AD = 2.5 RY/XD = 3.0 READ. = 4.0

0.0191 o.5000 o.0180 o.48o0 0.0157 o.4444 0.0111 0.3750
o.0411 0.7500 o.o316 o.64oo 0.0246 0.5556 0.0202 0.5000
0.0708 i.oo00 o.0488 0.8000 0.0347 0.6667 0.0317 0.6250
0.1075 1.2500 0.0693 0.9600 o.0617 o.8889 0.058 0.8438
0.1522 1.5000 0.1214 1.2800 0.O967 1.I11 0.073 0.9375
0.2594 2.0000 0.1882 1.6000 0.179 1.5000 0.1322 1.2500
0.3932 2.5000 O.34o 2.1600 0.219 1.6667 0.2150 1.5625
0.688 3.3750 0.415 2.4000 0.3964 2.222 o.3191 1.8750
0.833 3.7500 0.7366 3.2000 0.6359 2.7778 o.6164 2.5000
1.4259 5.0000 1.1550 4.0000 0.9313 3.3333 1.0381 3.1250
2.1616 6.2500 1.6575 4.8000 1.7171 4.4444 1.5921 3.7500
3.o136 7.5000 2.925o 6.4000 2.7478 5.5556 3.1198 5.oooo
5.o479 10.0ooo 4.5001 8.0000 3.9872 6.6667 5.1487 6.2500
7.4572 12.5000 6.3168 9.600 7.0478 8.8889 6.6316 7.0313
10.1480 15.0000 10.6207 12.8000 10.7385 11.1n1 8.2427 7.8125
16.3272 20.0000 15.6457 16.0000 13.3015 12.5000 10.0306 8.5938
23.3638 25.0000 19.O763 18.0000 16.0195 13.8889 11.9001 9.3750
28.1026 28.1250 22.6842 20.0000 18.9623 15.2778 13.8188 10.1250
33,0521 31.2500 26.5548 22.oooo 21.9963 16.6667 16.2165 11.oooo

30.5252 24.0000 25.0659 18.0000 20.5608 12-.5M
.19.= 25.2359 14.000030.6338 15.6250



TABLE 5a (concluded)

Rp/,D. 5.0 Rp/AD. = 7.5 Rp/;,D. 10 Rp/ ,D = 15

0.0128 0.4000 0.0104 .0.3556 0.0129 0.4000 0.0100 0.3556
0.024 O.54OO 0.0163 o.4444 0.0207 0.5000 0.0162 0.4444
0.029 0.6000 0.0236 0.5333 0.0299 O.6000 0.0211 0.5000
0.0541 O.8000 O.0431 0.7111 0.0562 O.8000 0.0260 0.5556
0.0855 1.0000 0.0696 0.8889 0.0929 1.0000 0.0315 0.6111
0.1271 1.2000 0.1046 1.0667 0.1209 1.1250 0.0376 0.6667
0.2455 1.6000 0.2081 1.4222 0.1589 1.2500 0.0452 0.7200
o.4148 2.0000 0.3680 1.7778 0.2009 1.3750 0.0532 0.7822
o.6493 2.400o 0.5137 2.0000 0.2546 1.5000 0.0716 0.8889
1.3553 3.2000 0.6912 2.2222 0.3139 1.6200 .0.0942 0.9956
2.4107 4.oooo 0.9244 2.4444 o.4024 1.7600 0.1220 1.1111
3.2467 4.5000 1.2009 2.6667 0.600o 2.0000 0.1966 1.3333
4.1936 5.0000 1.5221 2.8800 o.8772 2.2400 0.31o4 1.5556
5.2873 5.5000 1.9801 3.1289 1.2889 2.5000 o.4922 1.7778
6.4589 6.0000 2.9282 3.5556 2.4710 3.0000 0.7682 2.0000
7.6883 6.4800 4.0977 3.9822 4.1858 3.5000 1.2052 2.2222
9.2571 7.0400 5.5930 4.4444 6.4377 4.0000 2.7249 2.6667

12.1543 8.0000 9.0476 5.3333 9.0921 4.5000 5.1857 3.1111
15.3356 8.9600 13.1432 6.2222 12.1481 5.0000 8.5188 3.5556
19.0671 10.0000 17.8576 7.1111 19.2713 6.0000 17.2951 4.4444
26.9644 12.0000 23.0113 8.0000 27.4560 7.000

28.6300 8.8889

RpAD. -20 =p,. 50 Rp .- 100
eOPk- i+_ -e,,,kT. i, .O/k-

0.0112 0.3750 0.0131 0.4000 0.ol48 0.4250
o.o3l4 o.4o5o o.o19o o.48oo o.o167 o.4500
0.016o o.44oo 0.0266 0.56oo 0.0207 o.5ooo
o.o2. 0.5o00 o.o346 o.640 0.0253 0.5500
o.o258 0.5600 0.0396 0.680o 0.0303 0.6000
0.0336 o.625o 0.0959 1.oooo 0.0363 o.65oo
0.0496 0.7500 0.6781 1.7000 0.0493 0.7500
0.0703 0.8750 1.0751 1.8000 0.0964 1.0000
o.o961 1.0000 3.0099 2.0000 0.3579 1.5000
o.1283 1.1250 7.063 2.2000 1.1372 1.7000
o.1686 1.50o 12.8249 2.000 2.9558 1.8ooo
o.2924 1.500 20.0797 2.6000 12.5135 2.0000
0.5198 1.7500 19.6093 2.1000
0.9526 2.0000 27.8552 2.20O0
3.0830 2.5000
7.2985 3.0000

13.2897 3,5000
20.66o1 4.oooo
24.8126 4.2500



Ion-Attracting Spbrical Probe: v% *d Values of Ion Current

For Values of TI. T etween 0 and 1

.mloI0n I Ions Ions Mono-Energetic,

4mxwellian Mono-Energetic Electrons ,*a Collected
by Pro- Surface

-25 0.75 10 5.938 5.826
-20 5.350 5.249
-15 4.708 4.620
-10 I 3.978 3.902
- 5 "& ,5.o67 3.006 3.008
- 1 " ,.728 1.688 1.727
-25 0.5 10 5.838 5.709
-20 "t 5.263 5.145
-15 " ".634 4.527
-10 3.919 3.827
- 5 3 ". 3026 2.948 2.950

- 1 1 " .683 1.633 1.691

-25 0.25 10 5 810 5.659
-20 "1 it 5-236 5.102
-J5 "4415 4.498

-10 3.911 3.803
- 5" 3430 i. 940
- 1 1.9 1.607 1.693
-25 0.1 10 5.795
-10 "" 4.I8 3.911
-7 " 3.51
-5 it " 3.-P
-3 " " 2.94

- 2 i t 2.27
- 1.5 " 2.039 1.973 2.045
- 1.0 1t 1.725 1.663 1.7770." ""i.

- 0.5 t " 1.242
- 0.3 I " 0.965
- 0.1 It 06
-1 0.05 10 1.741 1.875
-25 0.75 1 24.1% 23.536 (owL)
- 5 It 6.6 5.400 (oML) 5.4O0 (OwQ,),.
-25 0.5 27.-61 28.475 (OM)
- 5 It 7.0 6.261 (OML) 6.261 (OMW'.
-25 0.25 " 3 . 36.953

t " " 8.7. 8.354 (on) 8.354 (ow:.)
-25 0.5 2 19.2 19.643
I It 3 14I 29 14.148
" " 5 9.621 9.459
" " 20 3.798 3.698

(QML) - 0rbital Motion Limited

m i i j i l j- *iwn I i no~ l ll PI J
I

J J I
j

n
I I

I ll
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Electron-Attracting Sherical Probe: Computed Values of Electron Current

For Values of T*/T. Between 0 and 1

(Repelled Species Colder)

" Electrons Electrons Electrons Mono-kT. T- D. Maxwellian Mono-Energetic Energetic, Ions Not
Collected by Probe

Surface

25 0.75 10 5.629 5.555
25 0.5 10 5.156 5.102

20o t4.641 4.592
15 4 " 4.o77 4.041
10 " " 3.446 3.418
5 " 2.675 2.66o
3 " 2.276 2.268 2.268
1 " " 1.679 1.672 1.683
0.6 " " 1.473 1.457 1.467
25 0.25 10 4.614 4.580
25 0.1 10 4.233 4.216
20 " " 3.798 3.790
15 3.329 3*326
10 2.806 2.808
7.5 " " 2.511 2.517
5 2.180 2.190
3 1.868 1.882
2 1i i.681 1.698
1.5 1.574
1.0 1.451
0.7 1.364
0.5 1.296
0.3 " 1.212
0, * 1.090
25 0.5 1 2o.412 20.635 44(w).

it 2 15.261 17.324
It 3 11.992 12.549
" "5 8.397 8.423
" 20 3.378 3:317

(34L) - Orbital Motion Limited
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TABLE 6b

Ion-Attracting Cylindrical Probe:

Computed Values of Ion Current i+. For Values of T+/T. Between 0 and 1

:i e~p T+ Rp i+.

ki. T Ions Ions Ions
Maxwellian Mono-Energetic Mono-Energetic,

Electrons Not
Collected by
Probe Surface

-25 0.75 10 3.238 3.182
0.5 " 3.075 3.026

" 0.25 " 2.891 2.856
S0.1 " 2.768 2.753

-20 0.1 10 2.587 2.574
-15 " 2.383 2.369
-10 " 2.138
- 7 " 1.957
- 5 is 1.805
- 3 It 1.594
- 2 1.425
- 1.5 " 1.304

J - 1.0 " 1.131
- 0.6 " " 0.9283
- 0.3 o.7o66
- 0.1 o.4926
-20 0.5 10 2.875 2.832
-15 i " 2.650 2.611
-10 is I 2.380 2.345
- 5 I " 2.o4 1.988 1.989
- 1 " " 1.326 1.306' 1.331
-25 0.5 2 5.588 5.686 (Ow.)

It 3 5.231 -5.686 O)
It 5 4.317 4.298
If 20 2.311 2.266
" 50 1.757 1.718

100 1.537 1.500

OL - Orbital Motion Limited
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TABLE 6d

Cylindrical Probe: Computed Values of Attracted-Species Current i4 or i, For T+/T. - 1;

Attracted Species Mono-Energetic. Results For the Case of Repelled Particles Not

Collected by Probe Surface Are Shown in Brackets

+i.O
0 3 4 5 10 20 30 40 50 100

0 1.0 1.0
o.1 1.0618 .o618

(1.0618)

0.3 1.1756 1.1756
(1.1756)

o.6 1.3281 1.3281
(1.3281)

1.0 1.5077 1.5077 1.500
(1.5077) (1.5077)

1.5 1.7058

2.0 1.8832 1.8832 1.785
(1.8832) (1.802)

3.0 2.1954 2.190 1.964
(2.193) (1.971)

5.0 2.7141 2.623 2.R01
(2.624) (2.M02)

7.5 3.2480 3.2480 3.016 2.415

10.0 3.7057 3.644 3.335 2.589

15.o 4.4831 4.279 3.857 2.876 2.270 2.031 1.818 1.638

20.0 5.1444 4.805 4.291 3.117 2.400 2.124 1.972 1.879 1.668

25.0 5.7298 5.7298 5.268 4.670 3.328 2.518 2.207 2.0W 1.931 1.697

nm i-7



TABLE 6e

Electron-Attracting Cylindrical Probe:

Computed Values of Electron Current For Values of T+/T Between 0 and 1

T+ i

kT T_ Electrons Electrons Electrons Mono-Energetic,
-axwellian Mono-Energetic Ions Not Collected by

Probe Surface

25 0.75 10 3.166 3.108
" 0.5 2.915 2.861
" 0.25 2.628 2.583
" 0.1 2.424 2.393
20 0.1 10 2.263 2.237
15 " " 2.083 2.o61
10 " " 1.870
7 " 1.724
5 I 1.610
3 it H 1.471
2 " " 1.384
1.5 i " 1.333
1.0 " " 1.273
0.6 " " 1.212
0.3 " " 1.147
0.1 " " 1.071
20 0.5 10 2.727 2.678
15 " 2.517 2.473
10 to 2.266 2.233
5 " " 1.940 1.919
1 " " 1.453 1.445 1.455
25 0.75 1 5.730 5.7298 OWL
S 0.5 1 5.667 5.7298 3L
" 0.75 2 5.480 5.7298 (AL

0 0.25 2 4.980 57298 (LI
0.5 3 4.826 5.436

" 4.02 4.062
" " 20 2.20 2.152

50 1.69 1.6
10'9 L0 1.491 1.448

It 0.5 2 5.287 5.7298 (OIL)

(IL) Orbital Notion Limited
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Increasing
Angular
Momentum

Probe

Probe

Joe Absorption
/ Boundary

, / rM(E)

FIGURES 4c and 4d: FAMILIES OF ATTRACTED-PARTICLE
ORBITS CORRESPONDING TO THE SAM.E TOTAL ENERGY E
AND VARIOUS VALUES OF ANGULAR MOMENTUM J, SHOWN FOR
SITUATIONS WHERE AN ABSORPTION BOUNDARY CORRESPOND-
ING TO THE ENERGY E DOES NOT OR DOES EXIST, RESPECTIVELY.



: q_ "Unpopulated" orbit
correspondinj to the
same E and J as

Probe 1 particle shown coming
from infinity

Absorption Boundary
r M(E)

, \ Probe

FIGURES 4e and 4f: FIGURE 4e SHOWS THE ORBIT OF A
PARTICLE PREVENTED FROM REACHING THE PROBE BE-
CAUSE OF THE EXISTENCE OF AN ABSORPTION BOUNDARY.
FIGURE 4f SHOWS A TRAPPED ORBIT OF THE TYPE WHICH
EXISTS WHENEVER THE DEPENDENCE OF POTENTIAL ON
RADIUS IS LOCALLY SHALLOWER THAN AN INVERSE
SQUARE POTENTIAL, CREATING MINIMA IN EFFECTIVE
POTENTIAL FOR SOME VALUES OF J.
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/ FIGURE 6a/
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/ FIGURE 6b

j2

C-

tE,

H D

FIGURE 6 QUALITATIVE CHANGES IN THE PATH 2 2 (E)
CORRESPONDING TO 3 SUCCESSIVELY INC REAS-
ING VALUES OF RADIUS r LARGER THAN THE
VALUE CORRESPONDING TO FIG. 5b.
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00/

FIGURE 7 LOCI OF EXTREMA IN THE (r, U) AND (J2. E)
PLANES, SHOWING EFFECTS OF IRREGULARLY
SHAPED POTENTIAL WELLS
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Point of Tangency
Corresponding
to Probe Radius

CASE 1 CASE 2

CASE 3 CASE 4

CASE 5 At/ CASE 6

CASES 8, 9, and 10 differ from
CASE 7 in the same manner as
CASES 2, 3, AND 4 differ from
CASE I

FIGURE 8: LOCI OF EXTREMA IN THE (j 2 . E) PLANE, SHOWING
THE 10 CASES FOR WHICH COMPUTATION OF CHARGE
DENSITY HAS BEEN PROGRAMMED.
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FIGURE 9: POTENTIAL AND CHARGE DENSITIES NEAR
A PROBE SURFACE IN THE LIMIT OF ZERO-
TEMPERATURE REPELLED PARTICLES
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loe FIGURE 10a
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FIGURE 10b

FIGURE 10: MODIFICATON OF THE FUNCTIONS it lo) ANqD
J%2 09) CAUSED BY THE PRESENCE OF A ZERO-
POTENTIAL OUTER BOUNDARY AT A FUMIE
RADIUS. FIGURE 10a CORRESPONDS TO FIGURE 3a;
FIGURE 10b CORRESPONDS TO FIGURE 6c.
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r- R
rp

0 10 20

FIGURE 13 POTENTIAL VS DISTANCE FROM PROBE SURFACEIN
TERMS OF EITHER DEBYE LENGTH. SPHERICAL"IROBE;
eO /kT. = f 25; T+/T. = 1; PLOTTED FOR VARIOUS "ATIOS
OI PROBE RADIUS TO ION OR ELECTRON DEBYE LENGTH.
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FIGURE 14 ION AND ELECTRON CHARGE DENSITIES Y~+ ANDY.. VS

DISTANCE FROM PROBE SURFACE IN DEBYE LENGTHS;
SPHERICAL PROBE; e0 IkT am 25; T+/T. - 1; PLOTTED
FOR VARIOUS RATIOS 8FPROBE RADIUS TO ION OR
ELECTRON DEBYE LENGTH
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FIGURE 22 ELECTRON CURRENT iL VS PROBE POTENTIAL FOR VARIOUS

RATIOS OF PROBE RADIUS TO ELECTRON DEBYE LENGTH;
ELECTRON-ATTRACTING SPHERICAL PROBE; T+/T. - 0
(REPELLED SPECIES AT ZERO TEMPERATURE). DOTTED
CURVE SHOWS TRAPPED-ORBIT BOUNDARY.
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FIGURE 23 ION CURRENT i+- VS ADIRp FOR VALUES OF TIT. OF 0.
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FIGURE 24 ION CURRENT i+. VS RII D FOR VARIOUS VALUES OF T+/T.
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FIGURE 26 L-LECT CURRENT i. VS R~p. FOR VALUES OF T+ /T.
OF 0, W? .~~;SPHERICAL PROBE; eOpIkT. a 25.
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NO COLLECTION OF REPELLED PARTICLES
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T+/ -_ T+/T.

FIGURE 27a ION AND ELECTRON CURRENTS COLLECTED BY ION - AND
ELECTRON-ATTRACTING SPHERICAL PROBE, RESPECTIVELY,
AS FUNCTIONS OF T+/T., FOR R )AD. = 10 AND VALUES OF
eO /kT. OF -25, -10, -1, 1. 10 and 25. RESULTS FOR MONO-
ENERGETIC ATTRACTED SPECIES WITH AND WITHOUT
REPELLED-SPECIES COLLECTION BY PROBE SURFACE SHOWN
FOR COMPARISON.
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COMPARISON.
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FIGURE 30 TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF R 'AD. FOR
WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION
OF elIp/kT., FOR VALUES OF T+/T. OF 0, 0. 25, 0.5 AND 1. 0.
ION-ATTRACTING SPHERICAL PROBE.
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FIGURE 31 TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF R AD FOR
WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION
OF. e0 kT. FOR VALUES OF T+/T. OF 0. 0.5. AND 1.0.
ELECTRON -ATTRACTING SPHERICAL PROBE.
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FIGURE 32 POTENTIAL VS DISTANCE FROM PROBE SURFACE IN DEBYELENGTHS; CYLINDRICAL PROBE; e$p/kT. - A 25; T+/T. a 1;PLOTTED FOR VARIOUS RATIOS OF PROBE RADIUS TO ION

OR ELECTRON DEBYE LENGTH.
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APPENDIX A

Limits on the Validity of the Collisionless Boltzmann-Vlasov Equation

The idealized collisionless plasma represented by the Vlasov equa-
tion is an abstraction which describes the behaviour of a more general plasma
only in the limit as its number density N becomes small or its temperature be-
comes large. More precisely, it has been shown in a paper by Rostoker and Rosen-
bluth (Ref. 10) that the Vlasov equation is obtained from the full kinetic equa-
tion for the plasma in the limit as the number of particles in a Debye cube be-
comes large for each species in the plasma; i.e., as g = l1/NAD3 -+0. For a
plasma which has a finite N and T, there exists a finite value of g, which is
much smaller than unity in most cases of physical interest. It follows that in
a hypothetical sequence of physical situations in which all relevant non-dimen-
sional parameters are held constant except g, which is made to approach zero,
the effect of collisions must in some manner become negligible. In particular,
the distance travered l a particle in the plasma before it is appreciably
scattered from its collisionless trajectory by encounters with other individual
particles must become large. We note again as in Sections I and III that the
collisionless plasma obtained in the limit as g -*0 still allows an individual
particle to be influenced by the electric fields of others, but only by their
collective macroscopic charge density rather than by their presence as individuals,
which is the subject of concern here.

Spitzer (Ref. 13) has shown that in such a plasma, i.e. one hav-
ing a small but non-zero value of g, corresponding to finite N and T, particles
are scattered out of their collisionless trajectories by numerous small-deflection
encounters with other particles, and that on the average, they are deflected
much sooner by an accumulation of these distant encounters than by single close
collisions.

These considerations serve to define a criterion which applies
to situations wherein a probe of given size is present in a plasma having
particular values of N and T. In such a situation, the results of a collisionless
theory may be expected to be useful for predicting current collection if the
average distance which the charged particles travel before being deflected
appreciably from their collisionless trajectories is large compared to the dia,-
meter of the probe. Since the ions in the plasma have much greater mass than the
electrons, the amounts of scattering accumulated by ions or by electrons as a re-
sult of encounters with ions or with electrons will, in general, be different
for each of the four possible combinations of these particles. By considering
separately each possible combination of scattered and scattering species, it is
possible to derive a set of four scattering distances for the plasma; the
smallest of these distances then becomes an upper limit on the probe size for
which the collisionless theory will apply.

In order to consider these four scattering processes separately,
it is here assumed that the scattering accumulated by a particle due to encounters
with particles of each species may be added linearly to find the scattering due
to simultaneous interaction with both.

In an incompletely ionized plasma, charged particles are also de-
flected by collisions with neutral atoms. This process has been treated else-
where, for example in Chapters 3 and 5 of Ref. 14. Because of the short-range
nature of the interaction potential between a charged and a neutral particle,
collisions involving neutrals do not tsually form the most severe limit on the
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collisionless theory if the degree of ionization of the plasma is greater than
a few percent.

The derivation given by Spitzer (Ref. 13) assumes that a test
particle moving through the plasma is deflected by a sequence of independent
binary encounters with the unmodified Coulomb fields of nearby particles. This
assumption is untrue since the test particle is under the influence of many
other particles at any given time. However, Spitzer shows by a physical argu-
ment that his results may be expected to approximate usefully the actual behaviour
of the test particle. It has also been shown by Sundaresan and Wu (Ref. 15)
that expressions for the thermal conductivity of a plasma, obtained using
Spitzer's assumption, are in good agreement with results obtained by a rigorous
solution of a truncated form of the B-B-G-K-Y hierarchy.

We now consider the four scattering processes mentioned earlier.
The ion-ion and electron-electron processes may be considered together. It may
also be shown that in the limit of small deflections, anxd for a given impact
parameter and initial velocity, an electron is scattered the same amount (except
for sign) by an encounter either with a stationary ion or with a stationary
electron. In the case of the encounter with an ion, the reduced mass (Ref. 13)
for the encounter is nearly the electron mass, and the mass-center encounter
coordinates coincide closely with the laboratory reference frame. For the
electron-electron encounter, the reduced mass is one-half the electron mass.
However, the transformation from mass-center to laboratory coordinates decreases
the scattering angle by one-half (Ref. 11), and the two effects cancel. There-
fore, a test electron moving much faster than the random thermal velocity ex-
periences the same amount of scattering from ions as from other electrons.

Spitzer also shows that the dominant effect on a test particle
moving at or above the random speed of the field particles is transverse scatter.
In this situation the distance of interest is that in which it is scattered
through a large angle; Spitzer uses as a reference an angle of 900. In the
fourth case to be considered, that of an ion test particle moving through elec-
tron field particles, the ion normally is moving much more slowly than the
electrons and the dominant effect is to cause the ion to lose its forward mo-
mentum. In this case, the distance of interest is that in which it is effectively
stopped.

In order to study the first three of these four types of scatter-
ing, we consider a test particle with velocity v and mass m traversing a plasma
which consists of one species of charged particle having a Maxwellian velocity
distribution. Let a, be the mass of each field particle in the plasma and let
T1 and N1 be the temperature and number density of the field particles. Let q
and ql be the charge on test particle and field particles, respectively. Let
bo be the impact parameter between test particle and field particle that would
correspond to 900 deflection if the fieldparticle were infinitely massive. Let
t c and td be the average time taken by the test particle to deflect through 900
by a single close encounter and by many small-angle encounters, respectively.
Making use of Eq. (5.22) in Spitzer, we obtain
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td 1

t 8TInA

where A = Y/b °

"2 Ek Tl/q12 N1

t = /7 N 1  vb 2 )

b0 = q ql/47 my2

T is a function of the ratio of test particle speed to field
particle thermal speed. When this ratio is large, T -# 1. For ratios of order
unityT is somewhat less than 1, so that esimates of deflection time based on

= 1 form a lower bound on the actual value, and are therefore conservative.

In general, td << to, so that most particles are deflected from
their collisionless trajectories by multiple small-angle encounters.

We assume that T = 1, that ql = q, aLd that the test particle

has the same energy as the average over field particles. We then have:

m v 2  = k T1  (A.2)
22 2  1

bo = q2 /127M kT1 = /127M 1 AD2  (A.3)

A = "D/bo = 120NlD 3 = 12r/g (A.4)

We define Sd as the distance travelled by the test particle while accumulating
900 deflection. We then obtain:

S (A.5)d = vtd = 8TRN boMnA "g n (12,rg)

We assume that the Vlasov solution will become invalid for probe diameters
larger than the 900 deflection distance. We note that Sd2Rp is, in effect, a
Knudsen number for each of the four scattering processes that ye are discussing.
The condition for validity of results obtained from the Vlasov equation is there-
fore:

RA 9S/gAn(l2r/g) (A.6)

This relation puts an upper limit on g. This limit becomes more severe as
RPN increases.

In order to study the fourth scattering case, that of a test ion
being deflected by electron field particles, we make use of Eqs. (5.27) to
(5.29) in Spitzer, to obtain the following expression for the rate of slwing
down of the ion:
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-v - ___3 2kT2 M+2 K (A.7)

v 2m+ O +22T

K depends on v onEly through AnA ~ igore this dependence to obtain the
following expression for the distanp,, zxavelled by the ion before losing most
of its forward velocity:

Ss vdt = f KdV= Ky0  (A.8)

t =to V v 0

We assume that the i&, is initially moving at the mean ion the"Iall speed:

1 m v 2 =1kT
2+0 2 +

Substituting, and setting q+2 = _2 . we obtain:

If T+ T-, we obtain, from (A-.5) and (A.l0):

S
d

For a -hydrogen plasma, this ratio is 62; for an argon p:' sm it is 390. There-
fore, unless the ratio T^~. is extremely small, the ion-ion scatter: ,g dis-
tance Sdwill always be srller than the distance S.

in C.G.S. iiits, we obtain, for the Debye length:

x\flcrn.) 6.90 T(OK) (A. 12)
N(cm._3

l/g MD3  328 _T oK) (A.13)
N( cm. 3)

For any given Rp/\j, it is now possible to obtain a maximum allowable value of
g from (A.6), and thence to, obtain a maximum allowable number density ,for any
given, T, from (A.13). Tabloe 1 gives a set of values of Amax. derived int this
manner, for v4ues of the r-tio Rp/2\D of 2.5, 10, and 100, and values of T of
10-) and 2 X 10L4 OK.

It should be_ orne in mind that when the scattering of elertrons
in a plasmR is being considred, N is the total number density N+ + N_, sintce,
as has been shownsions and electrons contiibute equally to electron scattering.
In this case it is also necessary to modify the definition of ? r in Eq. (A.l1)
a.nd hence the argument of the logarithmiu term in subsequent expressions. This

A
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is because AD appears in the derivation of this expression as the effective pene-
tration distance of the test particle electric field; the Debye length of the plas-
ma as a whole is related to the ion and electron Debye lengths as follows:

11 1 x (A. 14)

If T+ = T-, the Debye length of the plasma as a whole is less
than that for ions or electrons by the factor %r; if T+<< T, the plasma
Debye length is approximately equal to that of the ions.

Finally, it should be remembered that. the criteria developed here
are useful only for a qualitative estimate of the safety of using the results
of the Vlasov solution in any given situation. To obtain a quantitative value
of the error made by using the collisionless theory would require a solution of
the more general problem including the effects of collisions.
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APFNDIX B

Discussion of the Collisionless Boltzmann Equation

It can be shown that the Liouville equation (Ref. II) that des-
cribes the statistical behaviour of a physical system is valid only when the
system is described in terms of position coordinates rI and momentum coordinates
Pi which are canonical; that is, ri and Pi satisfy Hamilton's equations:

H 6H (B.1)
-P ri i

H is a function of the ri & p; which can usually be identified
with the energy of the system. The-total number of position and momentum
coordinates ri and Pi is equal to the number of degrees of freedom of the sys-
tem. For example, if the system consists of n interacting particles and each
of these is free to move in three dimensions, then the values of 6n coordinates
must be specified to determine completely the state of the system. In rectangu-
lar coordinates, the 3n position coordinates ri then become
Xl, zl Zl, x2, Y2, z2, n) Yn " In this case pi = mvi = mfi and the
pi become xl, rx2, *.* mZn.

In the collisionless limit, the motion of each charged particle
becomes independent of the individual positions of all the others and depends
only on the macroscopic overall field resulting from their collective charge
density (Sec. III). The Liouville equation that describes the motion of that
particle then becomes independent of the coordinates of all others; in fact,
it reduces to a form identical with the collisionless Boltzmann equation (4.1a
or b). This fact, namely that the collisionless Boltzmann equation is in reality
a one-particle form of the Liouville equation, is pointed out here in order to
make clear that it is subject to the same restrictions, namely that It is only
true when expressed in canonical coordinates. The Boltzmann equation is very
often derived from elementary considerations rather than as a special case of
the Liouville equation, and this restriction then does not appear explicitly.
Such derivations are usually carried out in rectangular coordinates, in which
case the positirn coordinates ri, expressed in vector form, become r = (x,y,z),
and the velocity coordinates vi can be written as v = r = (vx, v v). The
momentum coordinates Pi canonical to ri are then expressible as (mv mVz).
It is then customary to write p = my . If this vector relation is substitued
into the collisionless Boltzma=n equation (4.1a or b) the result is the form
commonly seen, for instance in Ref. 5, as follows:

Df 6f aDt =  =__ + = - 0 (B.2)

However, the relatio, n = my itself is a formally incorrect
statement, since the use of vector notation implies that this relation is true
independently of its expression in a particular coordinate system; this is 'not
the case if p is to fit the definition of Eqs. (B.1). For example, in cylindri-
cal coordinates, where r = (r,G,z) and v = (vr, Ve, Vz) = (0, rO , G), the mo-
mentum canonically conjugate to r by EqDs. (B.1) is R = (m., mr24, me); this
expression is not equal to my because the momentum Pe canonical to the
co9rdinate 9 is the angular-momentum mr2i rather than the linear momentum
mre. This warning is mentioned here because the Boltzmann equation is most
often written in the form of Eq. (B.2) rather than that of Eqs. (4.1) and may
therefore be a potential source of confusLon. The fact that Eq. (B.2) can give
incorrect results may be verified by substituting into Eqs. (4.1) and (B.2)
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the expressions for rv and p in cylindrical coordinates, and then solving these
equations by standard methods to find the corresponding loci of constant value
of f, i.e. particle trajectories. Examination of these resulting trajectories
for the case of a central force field will indicate that those obtained from
Eq. (B.2) do not show conservation of angular momentum as required. A similarsituation holds for spherical coordinates. This anomaly was found during

the early stages of this investigation when an attempt was made to use Eq. (B.2)
to obtain explicit trajectory equations.

A related problem is the precise definition of the distribution
function f which appears in both Eqs. (4.1) and (5.2) as well as in Sections
VII and X. Since Eq. (4.1) is expressed in terms of canonical coordinates ri

* and I , the distribution function f referred to in this equation must be a
denfty in the space defined by these same coordinates. In other words, if N
is now the total number of particles in a 6-dimensional volume element in this
space, whereas N has beegLdefined as number density in physical space, then the
defition of f is f = dti/d3rd= d3 N/d3E. However, both of the distribution
functions given by Xqs. (7.123 and (7.13), for instance, are of the form implied
by their appearance in Eq. (7.1) and therefore are given in terms of position-
velocity rather than position-omntC space. _In other words, f in these equa-
tions has the definition f = d X/drd~v -d 3N/d3v. This is in spite of the fact
that f appears in these equations as a function of energy E. By way of further
illustration, the density in (I,J2) space (in spherical coordinates) i.e.
d2N/d&dJ 2, is given by a different expression, namely the integrand of Eq. (7.5),
which is the quantity Wf(E,J) a(vr,vt )/(E,J2 ).
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APNIX C

Behaviour of the Iterative Solution Method

We first examine Poisson's equation in its nondimensional form,

Eqs. (9.6) or (11.3). We imagine that we have a net charge density S)net(x)
that differs from the solution of the problem by a small positive increment
over a certain range of x. Because of the negative sign in the Poisson equation,

the resulting effect will be to depress the second derivative of X by a small

increment over this range. This increment will be proportional to y , the
square of ratio of probe radius to the reference Debye length. Since we have
a two-point boundary value problem involving a constraint on potential at either
end of the range of x, a rise in potential will be produced over the entire
range, with the maximum rise tending to occur near the region where the charge
increment has been imposed. If the distribution of charged particles in position
space is now calculated, and the result is compared to that for the true solu-
tion, there will be fewer ions but more electrons in this region. The result
will be a net charge density that now differs from the true solution by a nega-
tive rather than a positive increment.

The magnitude of this increment will increase if either 7 is
increased or the range of x between end points is increased. If the process
is repeated, the increment again changes sign. The rasult of repeating this
process is therefore a sequence of functions 1nt(x) which oscillates about the
true solution. If y or the range of x is sufficiently large, the oscillations
will diverge and must be damped by mixing the 1'th and N l'th iterates at each
step.
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APENIX D

Integration of the Poisson Equation

From Eq. (9.6), the Poisson equation for the spherical probe is:

d2X 7 nnet
- = - - - (D.)

We introduce a new radial variable s(x) which is zero at the
probe surface (x = 1) and which increases as radius increases (x decreases).
We arrange the radial dependence of s so that a is a steeply rising function
near the probe surface and a less steeply rising function farther out. This is
done in order to define a suitable computation net; points in this net wil be
placed at equal increments in a. Varying the form of s(x) allows us to place
points in this net densely within the sheath region and sparsely outside it.
The specific forms of s(x) that have been used in the computations are con-
tained in the listing of Program 1 in Appendix I. We assume that dx/ds can be
explicitly calculated everywhere. We then have:

di d (dads) ' net( s )

dds \ds dx i s) - 0o(s) (D.2)

SXo(s) di, (D.3)

0
Let:

K,(s)- f a s') -r d,' (D.4)
ds dst0

Integrating a second time, and noting that the bracketed quantity in 3q. (D.3)
is equal to (dl/dx)s. O, we obtain:

x(S) X(O)+( (x(.) -x(O)) + f'1 (')d' (D.5)

0

Let: ,

().(---). a (()) + 11(.) dt(D.6)0

Thoa:

X(s)*) (x($)-l) + k2(s) (D-7)

raom (D.3), we obtain:

+ (D.8)
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Equations (D.7) and (D.8) are now used together with appropriate
boundary conditions at the outer edge of the computation net, to solve for
(dX/dx)s=0 . Equations (8.9), expressed in non-dimensional form in terms of x,
give in the spherical case the following boundary condition at x = xB:

By s 2XB(D.9)xB (n.x)

By setting s = sB in (D.7) and (D.8), and substituting the re-
sulting two equations in (D.9), we obtain:

.2K2(sB) - xBKl(sB)((D.lO)

_ 2-x B

This value of (d/dx)s=0 may now be substituted into (D.7) and
(D.8) to compute X , dX/dx, and thereby dX/ds, as functions of s. The quantities
X and dX/ds are used in the subsequent calculation of charge densities as out-
lined in Appendix E.

In solving the boundary-value problem concerned with zero-tempera-
ture repelled particles (Sec. XII), the outer boundary of the computation net
becomes the sheath edge, so that the required boundary condition becomes
%B = 0, Setting the left side of Eq. (D.7) equal to zero gives:

(dX = K2(sB) (D.1)
s=O 11_ - xB

In this case we choose a function r(x) which places points den-
sely near the sheath edge and less densely closer to the probe. The function
actually used is indicated in the listng of Program 2 in Appendix I.

A similar procedure can be derived in the cylindrical case.
Here the Poisson equation (11.3) becomes

d x* t(s) Ko(s) (D.12)

Proceeding as before, we obtain:

d 1 dx (ds r' de, (dx'.

0

We define:

x dg o ') a'
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We integrate again, and use the definition of K2 (s) in Eq. (D.6)
to obtain:

X(S) In x(s) + K2(s) (D.15)dx s-0

From (D.13), we obtain:

-A (s) ()s=O + Kl(s) (D.16)dx X(S) dx(s)
ds

Using (8.9b), we obtain:

(d) - XB (D.17)

We proceed as in the spherical case and set s - sB in (D.15) and
(D.16), then substitute in (D.17) to obtain:

(K2(sB) - xB Kl (sB)/ () (D.18)

s-O 1 - InxB

If we again use the boundary condition XB - 0, we obtain:

dAX K2 (SB) (D.19)

The numerical integrations required in calculations of the fun-
ctions Kl(S) and X2(s) involve integrands that are specified at n discrete
values of s separated by equal intervals As. It is necessary to compute
values of these functions corresponding to the same n values of a. If we let
Yi y(si) represent the given integrand and Yj = Y(si) represent the required
result for i - 1, 2, ... n, we then have:

Y a i-1 + f y(s) ds (D.20)

This integration process is approximated as follows: we pass
a parabolic arc through the points yl, y2 , and Y3 to find Y2 - Y1 ; a cubic
arc through yj. to y1+ to find Yi - Yi-1 for £ a 3,#4,...n-l, and another
parabolic arc t ough Yn-2. yn-1, and Yn to find Yn -Yn-l" The resulting
formulae are:

Y2 -hl + (5yi + 8Y -YP 31'2/

Y- a Yi-1 + (13 (Yi.1 + Yi) - Yi-2 - Yi+l ) 64/24; i-3,04,...n-l

Yn a Yn-l + (5Yn+ 8yn-1 - Yn-2) A/1 (D.21)

D3



If we set Yl = 0 and sum expressions (D.21), we obtain the
following approximation formulae for Yn, for various values of n:

Y3 -- (y, + 4y2 + y3) AS/3
Y4 = (3n + 9Y2 + 9Y3 + 3Y4) As/8

Y5 = (9yl + 28y2 + 22y 3 + 28y4 + 9y 5 )  A124 (.2(D .22)

Y6 = (gyi + 28y2 + 23y3 + 23y4 + 28y5 + 9y6 )  s/24

Yn = (gy, + 28y2 + 23Y3 + 24(y4 + Y5 + "'" Yn-3)

: + 23yn. 2 + 28yn. 1 + 9yn) As124; n > 6

These formulae have been used in evaluating the integrals (E.33),(E.36), (E.88), and (E.91). The major advantage of these expressions, in com-
i parison with many other numerical integration formulae, is that they weigh

iequally all of the interior points y .Yn" This feature is of particular.88). "These functions are evaluated
importance in evaluating (Ec33) and omp"-n~successively, many times during each iteration of the computing program~for

values of s differing by As, and with integrands y(ss') that are integrated
*over s' and change in a continuous manner from each value of s to the next.

In many cases y(ss') is a rapidly varying function of s and s',and it was
found that application of a standard numerical procedure having unequal
weighting factors tended to cause unacceptable scatter in calculations of

*charge densities.i
Another advantage of expressions (D.22) is that they do not

restrict the integer n to multiples of other integers.
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APPENDIX E

Expressions for Charge Density and Collected Current in the Case

of a Maxwellian Velocity Distribution

We substitute expressions (9.11) to (9.14) and (12.2) for an(P),
together with expressions (9.2) and (11.5) for the Maxwellian velocity distri-
bution, into the charge density expressions (9.5) and (11.2) and the current
collection expressions (9.9) and (11.4). By referring to Figs. 3, 5, 6, 8 and
10, we then define a set of integrals in terms of which charge density and
collected current may be calculated.

For the sphere, we substitute Eqs. (9.13), (9.12), (12.2), (9.14)
and (9.11), in that order, together with Eq. (9.2), into Eq. (9.5), to define
the following integrals:

00

(A)= - e (a -x) (E.1)

where A > X. We note that the value of this integral depends on X as well as on
A although for conciseness in later expressions this dependence on X is not
indicated explicitly. The subscript s is defined as referring to the spherical
probe; the subscript c will be used to refer to the cylindrical probe. It is
important to note here that the subscript s does not correspond in any way
with the radial net coordinate s, which has been used in Appendix D and is
used again in this Appendix, beginning with Eq. (E.28).

() e3X- - Xp) (E.2)

A
where:

A k K

and:
X - X2 K

_ (E.3)
1 - x

K is the value oB 0 at which the lines ( E. + and = +
intersect (Fig. ib)

3,s (A) { e- X- (E.4)

where: 0< A< 15; 0B in the value of S at which the lines p - X + Qx2 and
= OxB2 iitersect (point B in Fig. 10a); we obtain:

2 2 (E.5)
x2/xl -

El



C 2

~ ~= ~ 40d e~ ~~ (E.6)

Finally:

=i 05,s

We also substitute Eqs. (9.12), (12.2) and (9.14)intoFl. (9.9)
to define integrals for expresing current collection:

ils(A) f do e"  (P - Xp)

A

where:
A o

0 xB

where
O<A(<B

i 3,s(PVP2 ) : 2 do e.P S'G(P )  (.9)

1

For the cylinder, substitution of Eqs. (9.13), (9.12), (12 2),
(9.14) and (9.11), respectively, together with Eq. (11.5), into Eq, (11.2)t
allows us to define the following integrals for the expression of Ujarge den-
sity:

lIc = 0 x2(, Xp) 2 (E.10)

(A) = d1 eP arc sin

A P X

where, once again, we require A > -

1 d, e- S ll 2
T 3,c =e i T - (E.fL)

A

where, once again, we require 0 ,_ A < PB .

~~ CIO1~2 =' %T in { X2}j ~.12)



00 e- e -A
-(A ) = d e-- (E.13)

We also substitute Eqs. (9.12), (12.2) and (9.14), together
with Eq. (11.5), into Eq. (1i.4) to define integrals with which to express the
current collection for the cylinder. We obtain:

S()=2 00 d e-P (P

11c(A = ~ A X ( P)Y (E.14)

where: A > 0

i2 (A) = 20dB e'@-BP (E.15)

0B

where: 0 < A -, OB

i3,c(01 02) 1 e-' (%(P))' (E.16)

We define In and in as representing either In s and ins for the
sphere or In c and in c for the cylinder. We are then able to express the
charge density and collected current for either species of particle in terms
of In and in -

For example, if the (9,p) plane has the appearance shown in Fig.
3a, we have:

= 2 15(o) - 12(0) - 11(°) (E17)

i l l(O)

This situation corresponds to that of Fig. 8, case 5, in the
eventthat the portions of the locus of extrema shown dotted in this diagram are
not present.

If the (0,P) plane has the appearance shown in Fig. 3b, we then
have:

= 2 5(x) - 2 l(X) + jl1(xp) - 2(xp) E 18)

i = il(x )

This situation corresponds to that of Fig. 8, case 6, with the
same qualification as above.

E3



If the (Q,) plane has the appearance of Fig. 5b, we have:

=2 n 5 (PE) + 2 %PsO)- n2 (PH + % 10d- ()

(E.19)
i = 3(o, H) + .(IS)

If the (P,) plane has the appearance of Fig. lOb, we obtain:

= 2 n5(OB) + n3(o) + n3(Pc) - (PC9H) - n2H) - Yl(O)

(E.20)

i i 2 (o) + i 3 (Ac xH) + il(PH)

Numerous other combinations of these functions are produced by
the various forms of locus of extrema shown in Fig. 8.

We now carry out the integrations indicated in the expressions
for Tn and in.

We define the function g(x) in terms of the well-known error
integral erf(x) by the following equation:

g(x) = L e 2 (i - erf(x) ) (E.21)2 -t

where: 2 t2
erf(x) = e dt

0

For large x, the following asymptotic expansion (Ref. 16) is useful:

e _2 (1e 1 1 1.3,5

erf(x) = 1 - + --.... (E.22)
x rx 2  (2x2)2 - (2x2)3+~ E.2

We now integrate (E.1) to obtain:

(A) e-A

Si(4A X +g (T )- X) (E.23)

If A = X , we note that g(O) = VJ/2 to obtain:

n, (X) = _ (E.24)

Integrating (E.2), we obtain:

,(A )  I 2'  e-A A7

E4



In order to integrate (E.4), we note that it can be transformed to:

2 -B

A

Integrating by parts, we obtain:

(A)= - ( x/xB2 - e-A -e" Bf et2  dt (E.27)

0

Equation (E.6) must be integrated niuerically, since fl () is
generated in tabular form by the numerical solution scheme. In order 9o carry
out this integration, we make use of the radial variable a defined in Appendix
D, and we note that the functional dependence D = .G(P) can be expressed para-
metrically as 0= OG(s), 0 = (S). Equation (E.6) then becomes:

%,s(pl'2) 
-

s S 2  d G(s') e-G(s') x2(s) (E.28

- 7 f ds'e G(s') - X(s) -G(s') (E.28)
S '=SI

Making use of Eq. (9.8b), we define:
I

-- st ds'1 - -- d- (E.29)

Substituting Eq. (9.6), we obtain:

a ld 7inet (
E

) dx
G(' 2 d' 2 x'3  de' (E.30)

We also define:

CG(s) = aG(s )) (E.31)

'= { G(s') - X(s) - G(s') x2(s)} (E.32)

(E.28) becomes:

n4,s(P(sl),(s2)) f - f d,, (,,) G(,,) (E.33)

This integral is now in a form suitable for numerical evaluation;
the integrand has been reduced to a function of potential and its first two
radial derivatives, enabling the integration to be carried out. over the compu-
tation net in position space. The form of this integral means that the value
of the density contribution 4 I,. at the position a depends on the form of the
potential at every value of the)radial coordinate a' between the locations a,
and s2, and not on conditions at a only.

'5
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This means that the overall problem is "global" rather than
"local" in nature and cannot be reduced to an ordinary differential equation

as long as the distribution function (which is contained in the expression for
EG) is poly-energetic in form. This fact substantiates the statement made to
this effect in Sec. V.

Equations (E.7) and (E.8) may be integrated to give:

i s(A) =(A- Xp + 1) e-A (E.34)

i (A) = - (1 - (A + 1) e"A )  (E.35)
2js xB2

(E.9) may be integrated in the same manner as (E.6) to yield:

1) f as' CG(s') DG(s') (E.36)

Equations (E.23) to (E.36) define all of the functions necessary
to compute q and i for a spherical probe. As examples of their use, we substit-
ute them in (E.17) and (E.18) to obtain expressions for q and i for the attract-
ed and repelled species, respectively, in the cases where the. locus of extrema
does not enter the first quadrant of the (D,) plane. We note once again that
this condition is satisfied for the repelled species if the potential is a
monotonically decreasing function of radius; this is usually the case. It is
satisfied for the attracted species if the decay of potential with radius is
nowhere steeper than that for an inverse square potential.

In the spherical case, the unshielded potential varies as the
inverse of radius, whereas the asymptotic form of the shielded potential is an
inverse square of radius (Sec. XIII). In the cylindrical case, the unshielded
potential is logarithmic in radius, and the asymptotic shielded potential
varies inversely with radius. In both cases, the effect of space charge on
potential will be small out to a distance of many probe radii in the li.$t
Rp/NU<< 1. When this effect is present, it tends to steepen the potential
gradient; for sufficiently large Rp/AD, there will exist regions steeper than
an inverse square, and expressions (E.17) will not give correct values for I and
i. It is not clear a priori whether these expressions are correct for a finite
range of Rp,/?j or only in the limit as Rp/AD -*0. The former situation appears
more likely in the cylindrical case than the spherical, because in the cylindri-
cal case the potential tends to have a shallower form than for the sphere. The
computed results (Sections XV and XVI) verify this expectation .

We first use (E.18a) to calculate q for a repelling probe
(Xp > 0). Substituting (E.23), (E.24) and (E.25), we obtain:

e' p e'Xp

e- T'- (F=iX + g(jx-' +

('.37)
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From(E.3) we note that:

(Xp- R) (1- x 2 ) .X . X (Z.38)

(E.37) becomes:

e • 47 x2 g( X)- (E.39)

If XP becomes large, this expression reduces to the familiar
"Boltzmann factor" or thermodynamic equilibrium distribution. At the probe
surface, x -#1 and X -#Xp. We obtain:

-x

This expression corresponds to a distribution function which is
zero for outward-moving particles and Naxwellian for inward-moving particles,
as expected for the repelled species at the probe surface. We note that at
sufficiently small probe potentials, the difference between this result and the
Boltzmann factor becomes too large to be Ignored. Leam (Ref. 7) has used an
expression of the same form as (1.40) to derive a quasi-neutral solution which
gives an approximate relation between current and probe potential *hn the latter
is small enough that no sheath form near the probe.

Far from the probe, x -#0 and we again obtain from (Z.39) the
Boltzmann factor as a limit. In the field-free case, XP = X - 0, we obtain the
geometrical depletion factor due solely to the solid anile subtended by the
probe at any radius:

I -. -+-2 (1.41)

We next substitute (3.23) and (1.25) into (9.17a) to obtain the
shallow-potential form of I1 for an attracting probe (Xp < O)as follovs:

The requiremnt K < 0 I lies X X _ x2 . This condition is

satisfied in the shallow-potential ease.

If we aain set XP a X a O we recover the form (3.41).

We nov substitute Sq. (2.34) into qs. (Z.17b) ,a (2.18b) to
obtain the currents collected by the probe wben current collection is orbital-
motion-limited (Sec. VIII). Substituting, we obtain the well-kamn results:

37
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i= - , ; x (4)Xp X < 0(E.43)

e - •X Xp > 0

The cases of most interest and difficulty are those which de-
part from the above form of I and i, and for which q and i must be calculated
by one of a variety of expressions of which (E.19) is an example.

Functions analogous to those in Eqs. (1.23) to (E.36) are now
developed for the cylindrical probe. In general, these expressions are con-
siderably more complicated than those for the sphere.

We integrate Eq. (1.10) by parts to obtain:

-A 2 A-X X -X -
()arc tan x2 x f 00 e2,c  = 1r 1x2  A- .J -_x-? 2 ' -(f

A (44)

It is necessary to distinguish two cases: A is greater than
either Xp or K , which usually occurs in the calculation of ii for attracted
particles, and A a Xp, which occurs for repelled particles.

We observe that the integrand in (1.44) has branch points at
X and K on the 0 axis, and a siple pole at X , which always lies between
Xpp and K . For the repelling probe, we usually have r< XD. For the attracting
probe, this situation may be reversed. Since the range oF integratlon never
includes any of the interval between the two branch points, the pole P - X
is always outside the range of integration.

We replace the variable ol integration P in (1.44) by a new
coordinate which is so defined that the two branch points are located
synnetrically about the origin. In order to do this, we define:

1. (m + )/2

Sx (K,X) - . (1.45)
O'X'

B" A*r

We define the integral in Sq. (1.44) as H, and substitute (2.45) to obtain:

(B," ) " •" fa  e dt
B (I'- o) ( t 2 -_ )" (9.16)

vbere: B> i and --p < ; B- corresponds to the situation A Xp
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In the situation B > p we may expand the denominator of Eq.

(9.46) as follows:

3=0

i-o

0 2j(0.49)

-0

where:•

P=21

+ ~ 2 1.3.5 .... 21-

t210t 2.-6..0 i(.8

S 2k

where:

T -e1

T3"

0
02k .5...-1- k>0

PN ) 1.3~' e' d

S u s i u t n :H ( re ( ) 1 (T + B ) T i ' F ( B () )  ( E .5 )

and:

wre:so oml o >1

?il(B)en l is a veil-kown tranen et function caed the
exlpoetial integral, of' 3, or ti(i) (Rtet. ,16). Fron this reference, ve, have,
for 1< 1:

19
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I

B B2  B3  B 4
F,(B) = e (-An B - CE + B __- * " l .... ) (E.53)

where CE is Suler's constant; C1 = 0.5772156.... In the range 1 < x < c ,Ei(B)
may be numerically approximated by a formula given in Ref. 17, page 190.

The power series (Z.48) fails to converge for g = p; therefore,
the power series representation of the denominator in (1.46) is not uniformly
convergent in any interval that includes p, and the term-by-term integration
derived above cannot be used to evaluate (1.46) if B = p. In fact, the series
cannot be used to compute this integral for values of B within a certain neigh-
bourhood of p becuase convergence is too slow to be useful.

We therefore derive a procedure for integrating the integrand of
(9.46) from P to a larger finite value. We may then use this procedure to
evaluate (E.46) as follows:

H1 (B,.) = H _s(,B) - 1(psB) + H(Bo, o) (B.54)

Bo is the smallest value of B for which the representation (E.50)
converges with adequate speed. If B > Bo we evaluate II(B,.) using (E.50) only.

In order to derive this procedure, we let t = p cosh z to obtain,
from (1.46):

e-(,+e)rK e-(pcosh z - )s(,)= -(') ..... dz (1.55)
0 cosh z -0

where:

K =cosh( )An(- +

Expanding the exponential in series and noting that - + 0 - x , we obtain:

HIO) eXU K dzK dt s (.1 )A+1j PCohzOn '1
p( cos cosh -e)a

0 0 n-l 0 (S.56)

n-2 i-2

S........... n lA ni IM !..0



where:
L =eK

e2

K
Rn f c1 shnz dz

0
By integrating by parts, we derive the following recursion

formula for Rn:

R (coshn-iK sinh K + (n-i) Rn-2) (E.58)Rn n

For sufficiently large values of g, it becomes impossible to find
a value of Bo such that the series in Eqs. (E.50) and (E.57) both converge
sufficiently fast to be of use in numerical computation of HI(B,a). In such
cases, a numerical quadrature routine is used.

In this case, Eq. (E.46) is transformed by use of the relation
=- tnw to remove the infinite upper limit of integration. We obtain:

H1(Bgao) = e- f e-B ____________ (E.59)

0 (-nw-e)K (Inw)2 - )2
In the case A = Xp, the first term on the right side of (E.44)

vanishes; from (E.55), we obtain:

f e " (cosh z-l + /A)

H1(pac) ! - dz
g 0. (cosh Z-1l /k

-X
-__ ,A) (S.60)

ihere: X * Pf(& -0); we note that If either p or A is large, the main contribu-
tion to the integral is for small z. Since - ii < <la, we always have A > 1/2.

Differentiating P, we obtain:

j) -Mpcoshz 1 e~ *i(l-l/X) K0(i&) (E .61)

0

Ko(p) is the zero-order modified Bessel function of the second
kind. For sufficiently large values of p, the following asymptotic expansion is
useful (Ref. 18):
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0W = " - L2 + ,'" - 2 ? (E.62)
8p 2(811)2 3,(8p)3 ....

n

P(O,) = 0
..*~ ux r _ u'(i-i/x)

a, I di4' f ep' '"'K 0  ) dji'

2 n f (I')n+- (E.63)

Let:e-CO _W
e: f e ' (E.64)

Then:

R 0  2a A g(~J

n 1 n " 17" n (E.65)

The asymptotic series j Cn Rn fail:i to give a result if eitherA Pr X is too small; however, the miri ral value A = 1/2 is sufficiently large
to obtain a result.

Equations (E.45) to (E.65) define themethod for numerical
evaluation of Eq. (E.44).

The evaluation of 'hc(A) is carried out in a similar manner.We integrate Eq. (E.11) by parts, oerving that the bracketed quantity in thisequation is equal to unity at the upper limit of integration 8B. We obtain

(A -A a -B L-xO -td

,_xB )AB
(E66)

E12
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We define the integral in Eq. (E.66) as H2(A). Once again, we
make a change of variables in this integral, as follows:

OB

2 (E.67)

O-X 2

Substituting, we obtain:

He(A) - f -t d (E.68)
A-p teP

We observe that the integrand has branch points at = * i and a
simple pole at t = - 0 , where 0 > P. Once again, the pole is always outside
the range of integration.

As before, it is necessary to distinguish two cases: 0 < A < OB'
and A = 0. We expand the integrand of Eq. (E.68) as follows:

e+)= l eZLL

i--0 j--o

(® (E.69)

k=O

where: kI1Pk = L i'e k -

Substituting, we obtain:

~(_I)kd

H2  0 r Pkfe"jd (E.70)

k-0 A-1i

We set t = p sin z to obtain:

H2 e Y (-)k Pk Ik f2 sinkz dz (E.71)

k arc zi~ia(6 1)

E13



In the case A = O, we obtain:

Sk= 4#sinkz dz =7 k = 0

= 0; k odd

7r 3.5.. k - keve

For 0 < A < PB, we may integrate Eq. (E.72) by parts to der :Ve th IV
formula:

s k-Jl 2 ' + k-i
Sk- s k-2

where a= A--1

If j1 is large or rmrly equal to 0 , the series W. ,

fails to converge rapidly enough to be useful for numerical coj-t*mrA
A > 0, numerical quadrature must then be used to evaltate Eq. (E h).
A = 0, we substitute .t = ; cos z inEq. (E.68) and re-define t(*,) 0u'"

e I  V e- lf + 1 - cos Z)d z . e

H2 (0) Fdz=e (x

0 X+ 1- cos z (E

where: ? = u/(e-u); once again, we note t* the integrand gives most or it-
contribution for small z if either p or A bbmes large. In this case, we
have 0 < p < o and 0 < < . Differentiatpg P(p,?) with respect to a
before, we obtain:

6P -1(1/A + l) c z --. (l/ +) (.

Je e dz -e (0 .75.;
0 "

io(.) is the zero-order Bessel function of 4_oinary argument
(Ref. 18, pages 162-163). This function has the followingo-.ymptotic expan-
sion for large p.:

eIL[+ 12 1,.32 i2.52 1
Io ) W 1 2 + 1V + 1"5 2,5.

02(8o) "  3 ! (8 )3 ( 7(E .76)

in

Since P(oo,A) =0 we have:
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Sap f -'(/ + i) d0(wP(p X) = , p u

00

ef inL .L1 (E .77)
n

F7 Z Cn e"  F ,12 Cn Rn (E.78)_ .', (o) ,n+.! :
Ln P. 2 n

W- E iz defined in Eq. (E.64).

Here we must allow not only for the case of small g but also
*or the UaLe of small A . In either situation the summation in Eq. (E.78) fails
tc' Vrducea a result because of the way in which g and X enter into the recursion, a (..65).

We first study the case where A is small compared to unity, but

If we take the first term in Eq. (E.78), we obtain:

H2(0) - (E.79)

In the case of small A , we observe that the integrand in Eq.
(E.74) depends mostly on the numerator in the region in which it gives most of
its contribution to the. integral, namely the region of small z. In other words,
the width of the peak in the integrand depends primarily on 4; the influence
of the denominator is small in comparison. We approximate the denominator,
for ? << 1, as follows:

1= A - Ae A(cos z-1) (E.80)
Tl+ .1-Cos z + X(I - Cos z)

Substituting in Eq. (E.74), we obtain:

H2(0)- Nke'_--_T ee+)cos z dz = he-g-N Io(4) (E.81)

op
0

- - 11+ 12 2

2 Fp(7 7N 79 S +?iA) 210(8(p +X) )2

For large values of 9 , g(t)-+I/2 ; for small A and large p,
Eqs. (E.79) and (E.81) can be shown to approach the same limit. We combine

El5
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them to obtain the following approximation formula:

be0 susiue If Ws large and is 2!(8 (P+)) 2  j .2

If Aislare ad.4issmall, the Taylor expansion of 10(g) can
be ubsituedinto Eq. (E-77). This expansion is:

I + (R)2 + (p2 4 + 006.+ (42 2n Cn2
02(21.)2 (n.' n2 (E.83)

From Eq. (E-77) we have:

P~pX) + fe (1/A+1) 7r1(g' p (E.84)

0 0 W

Evaluating the first integral term-by-term, we have:

UN+1) 1(1Y4LI=eAX n R2n (E85)

0 n

where:
Rk eAW Qk eAW Ie-A k d

0

A 1 + +/

AW -
0 A

R k R1k-l - W
Ik A

W is an experimentally obtained value of pchosen such that the
series representations (E.77) and (3.85) both converge rapidly enough to be
useful. If both 1A and A are small, the series in Eq. (E.71) is used to compute
H2.

Equations (E.67) to (E.85) define the method for numerical
evaluation of Eq. (E.66).

The expression for 14+,c in Eq. (E.12) can be transformed into
an integration ever radius in the same manner as the expression for 114 in
Eqs. (E.6). This time, we substitute the cylindrical Poisson equation '(11.3)

into Eq. (E.29) to obtain:

E16



adX I Ynet (s' ) W (.86

Gs') = ds' + ---- (E.8)

We again define EG(s') as in Eq.- (E.31); we define *G(ss') as follows:

= arc tan (E.87)(s - i*Gsso -(s' )-X(s)41G(s,)x2(s)y (E.87)

Substituting in Eq. (E.12), we obtain:
S'=S

2

i ds' CG(s') *G(s,s') (E.88)
'4,c,(P(Sl),P(s2) 1;f

The current collection expressions (E.14) and (E.15) maybe inte-
grated by parts to obtain:

1 (A) 47 e { A- )i ' QAx (E.89)

i2,(A)" =2 e" 5' A + g (4A (E.90)

Finally, Eq. (E.16) becomes:

i3,c (P(Sl), P(s2) ) Tr ds G( s (E-91)
S'=S 1

Equations (E.44) to (E.91) define all of the expressions necessary
for computing n and i for a cylindrical probe. As in the spherical case, some
special cases are of importance. We first calculate n for a repelling probe,
once again under the assumption of a monotonic potential. Substituting Eqs.
(E.1O) and (E.13) into Eq. (E.18a), we obtain:

ed0 0e- arc sin X2( }p (E.92)

Xp

For large Xp we again recover the Boltzmann factor; at the probe
surface, X -+Xp, x -*1, and we again obtain Eq. (E.40). In the field-free case,
Xp = = , we obtain, for the geometrical depletion factor:

1

1l arc sin x (E.93)
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As before, we may also obtain this result by using the expression for q~ forattracted particles.

Using ECqs. (B317b). and (E-18b) together with Eq .(Z.89),. we ob.tain, for the orbital-motion..lifited currents:

-X
i e p p

E18
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APPIDIX F

Current Collected by a Probe of Large Radius When Repelled Particles

Are at Zero Temperature and Attracted Particles are Nmaxellian

We define a radial coordinate x, measured inward fro the sheath
edge, and two transverse coordinates y and z. In the planar approximation,
Poisson's equation reduces to:

2_ = (F.l)
dx2  rC

At x = Os =.O and dO/dx = 0. At the probe surfaceO 0 < O.
The distribution function at the sheath edge is a half-Maxvellian consisting
only of particles moving into the sheath. Constants of the motion are ExVy,
and vzo

E . ZeO(x) +P v 2 + _ (v 2 + v 2)

= Ex + St (F.2)

I is the energy associated with transverse motion. The distri-
bution function is:

3 /2T -44 kT
f=1i3 e ; vx > 0x (F.3)

=o ; Vx<

0 c Wa so a

N= fff. dvxdvy dv~u L Lfw dE dv dv
L y I L dx zy z112 (S dv

(p.4)

x = ( -"Z.5x)) d -5)" . (lx- Z.0(x))

___________ Ft (LAdv
3

W

D £+v s

((-) _ _) i
0 m(1-Ze0(x)) u

lf (l)T e EX/k dlx f e MIS d± (F.6)
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The quantities A and X are as defined in See. IX; g is as defined in Appendix E.

We note that p - ZeN and define s = x/D and y=- X to obtain,
from Eqs. (7.1) and (7.6):

2
toa i Wy) - g(ry) (F.7)

Sinc* y and dy/ds are both zero at a 0 0, it can be shown that
Eq. (7.7) has the solution:

J2O yq(y" )dy"

0

We define ao(y') as the square of the denominator in the inte-
grand. Substituting into Eq. (F.8), we obtain:

0 1(y') 2 fY'g(WV-') dy,

0

S(1 (- erf 4") d y"

0

4r 2 {(4' (#~~v) 79

Examination of the form of g shovs that Eq. (F.9) is of order
y'. When the square root of this expression is substituted into the denominator
of (F.8), a singularity occurs in the integrand at y' - 0. We may Iliminate
this singularity by defining 0 1(y') y' y 2(y') and setting y' - z . We then
obtain:

0f f dz 2  (7.10)

We may obtain a pmer series expansion for g(t) as fauos:

g~e *F (1.erf 1)

=S * •t2 et 2  6•42 dt (F..I.)

= • 2 - (
0

'~
2
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The second term, h(g) may be written as a Taylor series:

h(t) = z hm!0 (F.12)

M=O

Repeated differentiation of h(t) gives:

h(n+l ) = 2 (th(n) + nh
(n -1)

h(n+l) (0) = 2nh
(n-1)

h (2n)(o) = 0 (F.13)

(2n+1) 2nh( 0) = 2 n.

Substituting in Eq. (F.12) gives:

h(t) g +1 3 + L t5 .... = 2n+l 2nn-O 1.3.5...(2n-l)(2n+1) (F.14)

t 2n+l

n-0

For large eh(t) -# et2; the difference between these two
quantities becomes sall compared with their magnitudes, and Eq . (F.11) cannot
be used to give numerical results because of round-off errors.

We therefore use the following form to compute 8(y):.ry1

s 2 + y( .1 5 )

0 U'( 1 0li(Y')o '  '1
ij is an experimentally obtained Value of y for which neither

Sq. (F.9) nor (F1ll) suffers from round-off error. From the definition of a2,we obtain the following series form:

2 W)" 9r4s)" a X ' 2n-2 2z Z 2n.2, (F.16)
& n-1 n-1

Equations (F.8) to (F.16) define the numerical solution of Eq
(F.7). The solution gives the number of attracted-cpecies Debye lengths s be-
tween the probe surface and the sheath edge as a function of probe potential .
in the planar-sheath approximation. A program that has been used to compute s
by mans of the above expressions appears in Appendix I (Program 3). Numerical
values of s for various Xp appear in the output from this program which is
shown in Appendix J.

F3



Since in the planar-sheath approximation, all particles entering
the sheath are collected, the increase in collected current as Xp becomes
larger depends only on the increase in sheath area. For the sphere, the area
of the sheath edge varies as the square of its radius; for the cylinder, it
varies directly as radius.

The collected current for the sphere is therefore given by the
following expression: 2

i(Xp) - = (- + R() (F.17)

0 p

For the cylinder: = 1 + 'sDXp) (F.8)
i(xp) = (.8

p R p
In cases where 'AD is not small compared to R, the planar

approximation will fail to give correct values for the collebted current for
three reasons. First, the planar form (F.1) of the Poisson equation will fail
to closely approximate the spherical or cylindrical form.. Second, the orbital-
motion-limited current will decrease below £he values given by (F.17) and (F..8)
in terms of sheath edge radius because some of the attracted particles will be
able to enter the sheath and orbit out of it again without beirg collected by
the probe. Finally, the orbital-motion-limited current itself will over-estimate
the current because a certain class of particles entering the sheath will orbit
out of it because of barriers created by the potential well itself.

F14
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APPENDIX G

Power Series Solution of the Allen, Bo yd and Reynolds Equation

Numerical solution of the Allen, Boyd and Reynolds equation
(Ref. 6) has been carried out here for reasons which are discussed in Sec.XIII.
This differential equation expresses the dependence of potential on radius in
the case of a spherical probe at large ion-attracting potential in the limit of
zero ion temperature. The solution is carried out according to the method
suggested in Ref. 5.

Combining Eqs. (13.12), (13.13) and (13.14), we obtain the Allen,
Boyd, and Reynolds Equation:

d 2 dX .* 1X

----- e -(G.1)

2 dt dt 2

For convenience, we define new variables s = i/ , y =X_
A = i*/ r , and obtain:

X dx 4 ' G2

The boundary conditions at infinite radius become:

at x = 0 (G.3)
dy finite

dx2
I

The condition that d2y/dx2 remains finite at x = 0 implies that
the right-hand side of (G.2) must be of order x As y-4 0, e'y -. 1 and there-
fore Ai 2 /'[y -. 1.
Let: y = A2x4 (1 4 y) ; y'-. 0 as x -. 0

0 (G.4)
where: y' a xn

4_j n
n-i

Therefore:
y = bnXA (G.5)

where: b1 = b 2 - b, 0

* 2
b4 - A2

bn - A2 %n_4 n >

' Gl
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Substituting in the left side of Eq. (G.2), we obtain:
Go

x4  = bk. (k-2)(k-3) xk (G.6)

k=6

Also:

Ax2  
+

- (i (G)-)
1 O + Ci(Y')i (G.7)

1=1

where: C -- 2. .... : : : :21-

Substituting for y' in Eq. (G.7):

= +a x ( G .8)fT / (G.8)

= + 1+ exk

k=l

where:

k\! o ,iJ2 .. . h11
k C 1% +z CiZx 6(31 +2a2  6+ik 1: J 2 ~ 3 -2

L=2 hak-i+l

(G.9)
- C1 ak + ek

and: 5(ua) 1 for a a 0; 6(a) -o for a o.

Also: e-a1 + a* d( b xj)(.0
iz Ji-l Jul (G.10)

a 1 + Z fk Xk

kal

where: 1

G2
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and fk is given by an expression identical in form to Eq. (G.9).

Equating coefficients of like powers in Eq. (G.2), we obtain:

ek = fk ; k <6

(G.11)
ek = fk + bk-2 (k-2)(k-3); k > 6

Since Eq. (G.2) is invariant upon change of sign of x, it follows
that an and bn must vanish for all odd values of n.

For k z 2, we obtain, from Eq.'(G.ll):

cl a2 = dl b 2 + d2 b1
2 _ c 2 a1 2 = 0 (G..12)

Therefore; ak and bk both vanish f6r k < 4, and Eq. (G.9) reduces
to:

ek  ci  6(4J4 + 6j6  + hJh-k ) ( 4,,. .. a4 4  6 - h

i=2 h=k-4i+4 (G.13)

We therefore obtain from Eqs. (G.5) and (G.11) a set of recursive

relations for defining any bk in terms of b...bk.1 as follows;

bk = A2 ak. 4

(G.15)

C1 ak = dl bk + bk- 2 (k-2)(k-3) 4 fk* - ek*

Equations (G.4) to (G.15) define the power series expansion re-
quired to begin the numerical integration of (G.2), according to the method
suggested in Ref. 5; the Runge-Kutta numerical integration procedure is used to
complete the integration.
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0,



Operation of Computer Programs

Programs 1 and 2, both of which are listed in Appendix I along
with two smaller programs, constitute tested methods for carrying out the com-
putation involved in this research for the general case and for the case of
zero-temperature repelled particles, respectively. Either of these programs
produces one result, corresponding to one given value of each of the input
quantities eO.JkT., T+/T_, and Rp/ AD , (where we have again assumed Z+=l,
Z =-I) in an Everage time of about two minutes on the IBM 7t094 computer
(aepending on the values of these parameters), to a relative accuracy in all
computed quantities of about 0.002 or better. Most of the results not involv-
ing extrewe values of the input parameters have relative-accuracies better
than 0.001.

For program 1, these accuracies have been checked by running
representative cases (a case consisting of one set of values of the three
quantities mentioned above), each with several combinations of computation
net spacing As and outer boundary position RWRp, in order to find the inner-
most boundary position and coarsest net consistent with acceptable results.
This procedure is usually carried out at a nondimensional probe potential of
± 25, the largest to be used, since it has been found that the demands-by the
program for large boundary radius and fine net become more severe as probe
potential increases. It is then possible to compute with confidence-all cases
involving smaller probe potentials and the same values of T+/T_ and R? D.
using the computation net thus determined.

In general, the program becomes more demanding of a large num-
ber of points in the computation net at both very large and very small values
of R AD -, and more demanding of a large number af Debye lengths between R
and RB for very large Rp/ D . Since the rate of convergence of the program
becomes slower as (RB-RPD " is increased, the cases of large Rp/AD have
therefore been the most expensive in computation time, particularly for the
sphere. In fact, the case e0/kT. = + 25, T+/T. = 1, R/A D _ = 100 consumed
about 20 minutes of computation time, the largest value or any case computed.
Accordingly, no cases were attempted for the spherical probe at this value of
Rp/AD. for any intermediate values of T+'/T..

When several cases were run for decreasing values of the
repelled-species temperature, the attracted-species parameters being held con-
saant, it was found that the program became more demanding of a fine compu-
tatlbn net but it was possible to move RB closer to the probe because of the
contraction of the sheath as repelled-species temperature was decreased.

When a sequence of cases of decreasing attracted-species tem-
peratw &s run with the repelled-species parameters held constant, only small
chaxiges iicomputation net requirements were noticed in the case of the cylin-
der, but 1. the case of the sphere, the required values of net fineness and
o"uter boundt&V radius increased rapidly. At the same time, the collected

"rent result was observed to become more and more sensitive to small changes

'h* form of Oip potential until a point was reached where computations

. d to be prc, Ccal. This restriction became more severe with increasing
• potential; !"' instance, it proved impossible to compute the ion current

collected by the spbe, fr the case e( T_ = -25, T+/T. = 0.1, Rp/D- = 10.



These findings are in accordance with the prediction deduced from analytical
considerations in Sec. XIII. These restrictions proved less severe when calcu-
lations were made using the mono-energetic distribution for the attracted species.

Table 4 shows suggested computation net spacings and outer
boundary radii to be used with program 1, as determined by experience using the
program. It was found experimentally that in most cases the outer boundary was
at a large enough radius to produce results of the desired accuracy if the net
charge density + - n- was smaller than 0.001 at the boundary.

Figure 11 shows ion and electron charge densities as functions
of radius for a cylindrical probe for the case e /kT_ = 25, T+/T = l, RD_ =10,
for various positions of the outer boundary radius RB. The significant feature
of this diagram is the fact that in each instance charge separation is seen to
occur near the outer boundary. This occurs because of the fact that the assumed
relation (8.9) between the potential and its slope at r = RB is only an approxi-
mation to the relation that would actually exist at that radius in the infinite-
plasma case; the potential adjusts its shape to compensate for this error by
increasing its curvature near this boundary. Because Poisson's equation (4.3)
is satisfied everywhere, this curvature implies a charge separation near r = RB.
Since these boundary conditions are derived from the leading term in the repre-
sentation of the potential for large radii (Sec. XIII), they become more nearly
correct as the boundary radius is increased; accordingly, the charge separation
near r = RB may be expected to decrease as RB is increased. This behaviour is
in fact seen to occur in Fig. 11.

Because of this ability of the solution scheme to locally adjust
the potential to compensate for errors in the boundary conditions at r = R0
it may be expected that computed values of current collection will approacn
the limiting value corresponding to an infinite plasma very rapidly as RB is
increased. This is in fact the case, and it is of crucial importance in de-
signing a practical solution cheme. Earlier trials with a boundary held at
zero potential required RB to , lual to many probe radii before the current
collection results were observed to approach a limit with increasing RB. Plac-
ing RB at such large distances from the probe resulted in unacceptably large
expense in computation time per result; it was evident at that time that a
better set of boundary conditions was required before the computation scheme
could be made useful.

The remarkable insensitivity of the solution scheme to errors in
the relation between the potential and its slope at r = RB was made use of in
carrying out the computation for the cylindrical probe with zero temperature
attracted particles, using the boundary conditions for the finite-temperature
problem. It has been shown (Sec. XIII) that in the zero-temperature limit,
the asymptotic form of the cylindrical-probe potential is no longer proportional
to the inverse of the radius but to the inverse two-thirds power of the radius.
When computations for this case were carried out using the finite-temperature
boundary conditions, experimentation with various values of RB proved the re-
sult to be so stable that it never became necessary to put the more exact
boundary conditions into the program.

The key to this insensitivity to boundary conditions is the fact
that the boundary potential is free to seek its own equilibrium value; the
strong tendency of the plasma towards neutrality tends to fix the local potential
a small distance from the boundary while a small amount of charge separation
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adjusts the derivative at the boundary; the disturbance in potential shape
caused by the presence of the boundary is thus confined to the immediately
adjacent region.

In order to initiate a calculation with any one of the programs
listed in Appendix I, it is necessary to provide it with appropriate data as
indicated by comments included with the program listing. In the case of Pro-
gram 1, this data includes the values of the parameters 7T , 7T6 , and 7.
Depending on which species is used as reference, there ari two equivalent ways
of specifying these quantities. For example, it is possible to carry out the
calculation for the case e /kT_ = -25, T+/T = 0.75, R)/AD = 10, using as
input values 773 = -33-33, 7% = 0.75, Y = 133-3. It is more convenient to inter-
change the roles of ions and electrons and use the values 7r3 = 25, 7T6 = 1.333,
Y = 100.

It is also necessary to specify, as input quantities, two
coefficients which determine the magnitude of the mixing function (Sec. V).
Choosing values that are too large causes the computation to diverge in an
oscillatory manner (Appendix C); choosing values that are too small causes
excessive amountsof computation time to be used before adequate convergence
is attained. The fortran subprogram ADJUST (Appendix I) monitors the conver-
gence of the calculations and attempts to correct the mixing function accord-
ingly, thus making some allowance for a poor initial guess.

This subprogram also ends the execution of a case when the
accuracy of the computed attracted-species currents and net charge density is
sufficient. It uses two criteria for making this decision. The first is the
convergence of the current result to an asymptotic value; three computed
current values, spaced 10 iterations apart, are stored and used to calculate an
asymptotic result, based on an assumed exponential approach to equilibrium;
if the third result differs from the asymptote by a relative amount less than
0.001, the first criterion is assumed satisfied.

It was found necessary to include a second criterion because of

the non-monotonic nature of the approach of the current result to its final
value. This behaviour is illustrated in Fig. 12, which shows computed current
as a function of iteration number for a typical case. This behaviour caused
a tendency for the calculation to be terminated prematurely by false indications
of approach to an asymptotic result.

Accordingly, convergence is now also tested by comparing the
quantity net computed at the end of a given iteration with the unmodified net
charge density T+ - n_ produced by the next iteration. If the calculation

has converged fully, these must agree by definition; .the square of the rela-
tive difference between them is averaged over the interval RB-Rp and iteration
continues until this average is less than 0.01.

During early development of the program, an attempt was made to
speed the "calculations by storing values of the net charge density distribution
over several iterations and projecting the entire distribution ahead to an esti-
mated asymptotic result. This procedure failed because of the sensitivity of
the program; it almost inevitakly produced a fictitious system of potential
barriers more complicated than any of those for which calculation of charge
densities had been programmed.

The optimum method of generating each Maxwellian result is
normally to begin by computing the corresponding case for mono-energetic
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attracted particles, and then to use the charge density distribution resulting
from this case as an initial approximation for the Maxwellian case. Since the
time per iteration for the mono-energetic case is much smaller than that for
the Maxwellian, this procedure usually results in a smaller total expenditure
of computer time and produces an extra (mono-energetic) result as a bonus. The
first two examples of computer output shown in Appendix J illustrate this pro-
cedure.

Program 2, which is used in computing the case of zero-temperature
repelled particles., has presented considerable difficulties in operation. This
is apparently because as it converges toward a result, it often passes through
a set of approximate configurations in which the calculation of a succeeding
iterate is highly sensitive to the precise spacing of points in the computation
net and resulting inaccuracies in the computation are capable of setting up
stable oscillations which prevent convergence from being completed. These
difficulties seem to be less severe in many cases if a very coarse or very fine
net is used; however, these remedies have the disadvantages of inaccurate re-
sults and great expense in computation time, respectively.

In spite of these difficulties, this program has been success-
fully used to compute spherical and cylindrical probe characteristics for values
of Rp/ D_ from 0.5 to about 20. Since in this case the planar-sheath approxi-
mation (Appendices FI,J) gives the limiting form of the probe characteristics
for large Rp/D-, results for values larger than 20 can be obtained by graphical
interpolation to a high degree of accuracy.

Computations using Programs3 and 4 are much simpler to carry out
than those using Programs 1 and 2; the operation of these programs may be
studied by examining the relevant equations in Appendices F and G, as well as
the listing of these programs and samples of their output in Appendices I and
J, respectively.
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APPENDIX I

Computer Program Listing

The Fortran II Programs used to make the numerical calculations
are as follows:

Main Program 1: used to carry out computations for the general case.

Main Program 2: used to carry out computations for the case of zero-
temperature repelled particles.

Subprograms ADJUST, COOKIE, CHARGE, CUBIC, POLATE, CHAMON, CAL, COEFT:
used by main programs 1 and 2; COEFT is also used by main
program 3.

Subprograms FIRST, SECOND, THIRD, FOURTH, UNO, DUO, TRE, SDFN: used together
with main programs 1 or 2 to carry out calculations for

spherical geometry.

Subprograms FIRST, SECOND, THIRD, FOURTH, DYO, CDO, TRY, CORE: Used together
with main programs 1 or 2 to carry out calculations for
cylindrical geometry.

Main Program 3: used _tgether with subprogram COEFT to calculate the
planar-sheath limit of the case of zero-temperature
repelled particles as described in Appendix F.

Main Program 4: used together with subprograms POWERS and CHASPH to obtain
a numerical solution of the Allen, Boyd, and Reynolds equation
(Ref. 6) as described in Appendix G.

A listing of each of these programs follows:
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e FTA, 4)F.AAG LODBOWL-2 2d3 GO TO 4330.33((.KSW

ETC44EI'A444)*A.O4ELMOI'"4)
4
EL99*? 330 E0Gr--Z4404/LOG~l*IWi4

49) CETA)J4SETC*A8)OtELPI44TC..A45F404L4 Go T0 332

33* OP 189 14 1448

4E4440 L 'as 04) I 4*04054 I *EOEW 0S 141*4(

DO ( 92 J"1-19l! 184C0-I 4(9. 49.3*C

192 4T84444EA4440*OEL404140L49 
C CALCU.LATE POSITIVE AND I&OATIVC COAPCC DEN4SITIES.

999 K.av*44.09L.4
*634400.1 (99 CALL CHARGE

(840-40 494494293Go TO 3*4

DOW493 4.4sA
2
.. 3A*0 CALL C44AMON

(93 ETA144.4T*4*AY4*4Jb44K*P44l-PO4A GO TO 34

293 GO TO 426.*804.44009 341 (P45(4.1! LIGHT L164.160
164 4845SENSE LIGHT 21162.160

C (4.TEOQ.Tc (TA AND0 1IMt07 I** Y CONOI1110"S AT OU~TER EDGE OF NET7 462 5SEN5E LIGHTI

TO OOr14 AM £90 *05. 5E44c LIGHT a
Go TO 348

26 0033444
33 y44.GR*4*4/*04P2*41l 160 4(90. 4 440*

2444.3.0 K .y

GO TO 4*4.3
0
,,T4.T44.4T4 Pa 39 yp.yOSOSORTrbIh141 ~

C OUTPUT AS 59E(4844t1 ,l K74. WRITE OUTPUT TARE 6.98.VP*.VNP.VIN
96 084AT464 VP4.4(8E(2.5. Gh y4P.4PE4.506 V(44418(12.54

300 .,K-10 3(8 TOTAL-CLOCK4TIMEflOO100.O

"I4 
WRi TE OUTPUT.1 TAPE 6 .319.TTL

303 4Y.490044(9044T4(349 89044729"0 ErgCU7404 TM~ IN MINU4TES F7.2)

I 4*774 3(5.346.345 GO TO 3
3(6 .VT1(a
345 1748134 304.3414309 C KENT! - N004. DO~dLE 44,4*440 OF POINTS IN. NET.

Go To 306 
51 1(4*00- %P454.58.90

305 7V547T4vl-CG 98 o 52 1!1.4
GO TO .306 42.444WI11*1

306 4P47T.454310.30703o 52 ETA444.ETA4L4
307 4848434 30.0.0944
308 WRITE OUTPUT TPE N.I'.4MIytG47V(444.84

302 F0844*7494 4E'401*.44 W4G9.4.604 VPOS.GIq, GO TO 460
GO TO 3130

309 WRTYE OUTPUT TAPE 6.304.4EN0.TPOS.4T754(4.4.1.9V44 23 00A53 (.5.40.4

304 809.4*(544(4.0(4.8 YP05W9.8.64 yEG :.48. ETAI4(-34.43.kI4eTA4I!.0P8OET*44-21'tTA4IIB.0,T

GO '10 340 13 4TA44..14.4...4A 1956.04T44424*3.044TA41I4f1)6*.

34*0Go T 444.a4 ;.4TT 9. W8(IT OUTPUT TAPIE 6.57."

71 WRITE OUTPUT TAPE 6.*5.vP05.T5(07FRA tZZM-8
45 858*4T77 TpP5.14.7.71 VCEG.44444.74 50 LITE.2440

8
4e4*.*4:

70 00 TO 44.4 .444481 45 LIGHT 0
*2"'"OTPT T.4.144(.T4.*44EAS4T.G44 Go TO to4.62.63.6*I.L(TE

4 4.4I., PtAPRINWTI 64 SENSE ,144 4~

*38064474122 I 444 44/88.94244ETA.40*34481.74644TAPS.TNS4ETAN444 GO To 426.2"04."006

4 4244443.08#8.4.I4rt1.8444 62 52449!0 LG*7 IGO TO 421.2804.440

C CALCULATE NEW VALUES OF' 5(7 CHARGEOeN0440(7. 63 SENSE LI GMT 3
4049 IGT TO 426.28U40DE

4. 00*4II (."4.4000
*' 0 ET444.~0444(441POTA444P4ETAP5441.07AN4G4444COO4(4 80704 26.28.04

IPP90303SO"490

48 Go 4 3 s:9 3 0 5

'0 07392

"GO TO39

W-- 74344.314.4
313 L5444a

so to 206

344 *TI.4T0
*6 I445(90I49049.99.48
*6 , 1844404-ENd490.84l .90

C 4490 * 5(90. STOP ITEOTI4I8.

99 W10431319.358.356

G0 TO 357
386 y4441.4N/564T84P4



C MAIN PROGRAM 2 Page 9 32I IFISHERAOI4OU.4OI.402 Pe@ 10
C PNOSE CHARACTERISTIC - REPELLED PARTICLES AT ZERO TEMPERATURE

DIMENSION vyIIOI *30 S*EDGEe.I.OHI.l2I*IpTEE!*.1SI/PRORYE
DIMENSION KI8Cl.D4II. 91A4011l.ORDSIAOII.RWIAOII0 .S'COTIOI. Go TO A0l
I C0081401I1IWI401 1 14IDS .ETACIAOII.ET APS.II.TNAIROII.
2 MOCIWCII.OIWS*AlI.BETAGIAOII.ALFAGIROI.pSIAIAOII.EPSGIAOII. 42 S.CE.eSMRAD
S YIAOII.214D1I.SmiIOII 00 TO al

CO04,SO B M.SO.01 :RPSCOT .COOK.X.s IDS.ETA.ETAPSETANG.R.O.
IOGSETAO.ALM GPSIGEPSG...ST A0l GIO TO I8.,270l.MOOE

COVA40M PI.SOTPI.VIPI.SAY.MOOE.M.RP.OELTSGASA.P13.PIA.P17.YPOS. 6 WRITE OUTPUT TAPE 6.7
I NCPINTI "I.T !.L. OI 7 FORMAT I 73M1 SPHERICAL PROSE CHARACTERISTIC -REPELLED PARTICLES

Coo" LIRE.WET"T.T.TZ NW. SW.SWA.RETAW.SfitTASARACEIE IAY ZERO0 TEMPERATURE I
ISCRIT.SCRITA.LKI.EKACRIDS.CROS.YT.AU.TETAEO CDRZCT.ALT 00 TO I

270 wRITE OUTPUT TAPE 6,271
C PTEE . MOCCIPENSIONA. PROSE POTENTIAL FOR ATTRACTED PARTICLES 271 F ORRATI7ITI CYLIND3RICAL PROBE CHARACTERISTIC - REPELLED PARTICLES
C PROST l8v RU EE t LENT OFATAT SEIE IAY ZERO TEMPERATUREI

C ORA NMITIAL VALUE OF SHEATH EDOGE RADIUS It PROBIE RADIUS 9WIEOTU AE6I.TEPOT.IEG.T.T
C IF SNERAO *VEg SHEI.uE *STERA. 10FORMATIT7I4mPrEE;.AXHPR:BY .NS.EOGE.TA3MTOT.

7
X3H0T2/

C IFbAD - 0. RE-USE SHEDF. FROM PREVIOUS CASE, I 141F3E10.3.UN2F1O.7)
C IF SMERAD -VE * ,GETERATE SJ4EOGE FROM EHIL.O-LANGAUIR RELATIONt. SI WRITE OUTPUT TAPE A.8.ATI. T.NIYIA.M.NUR.TE2,PRINT.OO.CD
C OTI &NO OTZ ARE COEFICIENTS OF .OESVTE. TERM AND .FAn-FIELO. TERM 8 FORMATI(47M KTI KT? INITIA D NUS NE.O SPRIINT MOE MCO /IXIAISI

C IN RISINGFLCIN
FUNCCLOCON.O

C ETI SPECIFI11ES AMODUN? OF OUTPUT FOR EAC IERATION EXCEPT LAST. "ECOKD0

C pe 1T SPCFE MOUNIT OF OUTPUT FOR LST ITERTION. P0 P13.115927
C IITIA SEIISWTHRINITIAL CHARGE DeNSTY FUNCTION I ETA I SoTPII. 7724539

C ISTHAT FOR A CLOLGUI SEA RWHTHER PREVIOUS ETA TPI./IC IS Re-SD GAYW I .OSOTP

C ..NT.A I Q CHLDLNGUI TICT ASSUMED MAD-L
C INmI * HLU..LANG8IR S1H ASSUMED to BEGIN FIRST NEW.0C ITERATION. PREVIOUS ETA RE-USED WHEN SHEA TH I.DGE KUTY-,

C RADIUS IS RESET. GARHA PoaTEfl2

C INITIA 3 PREVIOUS ETA RE-USED. 6I.
C M IS R.JRSER OF POINT S IN COM"PUTAT ION NET. FTEEW.ABSPIPTEEI

C ROS. IS ITERATION AT WHICH DENSITY OF POINTS IN COMPUTATION NET HI3WPTEE
C IS Dow CLE. 40

C NR ISMAVIMUN TAUMBER OF ITERATIONS. MEW

C SPIN -OTU WILOCRAEVERY NPRINT.TH NET POINT. IFIINITIADI51.1
C MODE SPECI FIES WHETHER COMPUTATION IS FOR SPHERICAL OR CTLINDIRICAL
C PROBE. 112 NS-1

C MCD SPECIFIES PARTICLE DISTRIBUTION FUNICTIONS. "P.7p
FACT.GAMOLD/GAMMA.PTEE/PTOLO

CASE. * I0090 1;I.1

3 READ INPUT TAPE S. A.PTEE.POAYE.GHERAD.OTIW.GT2W 5 ETAII.TWI)FACT
A F'3RMATIIP3EIO.3.OPZFIO.71 .26 IFIN-IIT.IS.I9
READ 'TPUT TAPE 5.9.,CTI.KT2.INITIA.H.ROUH.NR.NPRINT.MODE.MCD IT HI

5 FORMATIIAISI WRITE OUTPUT TAPE 6.22.M

22 FORMATIr *HM.15I

IFIINITIA-21161.169.IA6 
GO To ISj

16 IISENSE LIGH
T 

11167,165ISNM
IA? FIESE LIGHT 21168,165 NP.M.
IR 6 ZENSEd LIGHT I 00 211 I..

SENSE L GH
T 

2 041I L
.O0 TO 3 2L TAIII:ETAIJ"

Go To IN

10 TOI:IT2 IS SENSE LIGHT
222 PRINT 220.EASE SENSEO LGT I
220 FORMATII2HO REGIN CASC 151 VEROO
221 9ASE KA SEHI GA"OLO GANNA

IITM321,321 .320 TOLO.PTee
320 O.M KSET *I

OT2-OT2M

IA FLV..M Pae LI 39 WxoIIIIWZIIIHEDG.ERIII-DI.Ol Page 12

OELTS-l .O/FLM

YZP*0.125 33) EOGE.-ZIMPI.LOGIRIMPI

332 00 285 *Hl.P

253 0018 I-I.-P O'XISl :IX.OG" I........Il/lI

FIEI- 2M5 .111 I1IlEDGEHLOOFlI8II

$11 IOELTS8FIC GO TO 11 99.340.3.1l.CD

ROIIIWtST.EO-IHO-IUIZPIIO-1111.YPOI.-11D2
II210/ROPI II C COMPUTE NEW CMARGE DENSITY ETAPSIIM-PI

1100112. -IIIIAM?
OOOS4I-SlIIHEG-.1IZP2Ol.GIIWIO.Zl 199 CALL CHARGE

SCOTI IIW soRTFII.-XSl" Il O TO 341
Is COOKI II.CO:KIEII.OTI.0T21

Go To 12D.23.2U1.ASET 
30 CALL CHARON

20 IFI2.INITIA*ASET-51207.20T.29A OT .

2IT DO 213 1.I.814 31 :I:FISE LIGHT 11161.1AU
AIIIIWPTEERII5IIEOGt-l;0.XI ::/ISHEO.GE-I.GII.-I.3333333 11 IFSENSE LI GHT 2P&62.160

210 E 0II ..5/SORTI.J2.IHI 262 SENSE LIGHT I
GO TO 29. SENSE IGMT 2

GO TO 318
299 GO TO 1370.3T0.22A2.ASET
370 GO TO CZ6.2RUI.MOE I60 KEROWEENOHI

C COMPUTE POTENTIAL X1ll-HPl AND ITS GRAJIENT 0810S11-MPI USING Go TO lAI.30".7I.TII.ATI

C CHAR GE DENSITY ETAIIRPI

YR' 00 33IlM L'R I
33 lI.AM.ER1,l5lIH~.ASI 315 YT:XOOFfHENO.MYAI

IIW. IFIHYT13I9.316.315
V IS. I316 KYT-I0

SDTO5 35 YYYIKYT)IYOS

36 0.3 38 IW.P 306 IFIMYY-MY9310.SO7.SIO
0010511 !IWZI VO~j I307011 O WRIT E OUTPUT TAPE .3.E ,IYI.I.MK

58 TIIIWOMIOS.II 302 FORMATION AENOIA.SR Y-IOFlO.*I
2411 WPI 5 310 GO TO IAI.3111.LYW

GO TO 34 TI WRITE OUTPUT TAPE 6.AS.IPOS

AS FORMATISH YWIPEIA.TI
280 DO0 281 IWI.MP 70 Go To IAI 'A.A2.'TI
26111-O.DS4IIH GRAMNLTAIIIIXIIHRSIII 42 WRIT: OUTPUT TAPE6.SlROIIEAIXIIETPI.

2 1. l0'.O 
I 1 I . PR INTI

8INKW3 43 FORVATIDIRII.37M 1.RP.IIA36CTA.22MI.5TIIE NEW)/
GO TO 34 I P 2IIIAGFO.S.tP3EIH.7,lI

282 D .1A DO.M Al0.0 IWI.MP
D4IOI~lZII8D8DlIIle ETANGI 11066 0 ETIlII.OCOIIIRTA4IIETAPSII8COO~lII

24 I.WIS
K INK..A PTEQRWIXIMI-WSOqMPII.O.IOSIMP)'O,051MPl
GO TO 38 N TAALTNENO

CALL. ADJUST I NALT.MAD.WMEW.aT I.OTZ, .0W35.PTERR.P TINVI

0S0 3! 1W3.W IFITAALT-KER-IS.380.2Z6
IS II.2I-l~ISO4IlIIIYIllTl~2IIIIIROLT,2.O380 IFIIEOIE fORO S37t1.220

ZI.INN I .O IMIBRYW 4-!3I1I1DELTS" 2.0 37 EROWPIPTEE
00 TO 438.325.262.S3I.ITW IFIA8SI ORORI-00236.A34

325 EOE2MII.-IPIC SHEATH EDGE POTENTIAL GRADIENT IS SMALL ENOUGH. ERO EXECUTION.

DIIIO~sIIIWOHIO5II4EDGE4OAOSIII 366 NCRORMINUFIBENOII.NDO



V lTE OUTPUT TAPE A.363.E10OR Pop 13 C DOBL NUMER OP POINTS INg 14PUATO
Go To 2264NC1WTTONRT

C VIE CURRENT VALUE Of SHEATH EDGE POTENTIAL. GRADIENT TO RSEUT -31 IPIAOO-2OAISaa.54

C SHEATH EDGE RADIUS. o6 13 2 1.1.10

345 EROtl'ERDLIo
sICO*SN. 532 ETAIXIIETA(L)
ERD~ERNoR 6.28
smoHED~tGE "OINT.2-4PRINT
KUTT .XKUTTVI 

g z,IF4KUTVTT3 1385 .384.366 1o 1

386 SOEDGE.95.0-17PO.SS.-SHIIOWIESO-ERO

IP'SIEOGE-Iu .135o.350.360 23 Do 53 1R5.MP.*

3855 IPIDAI(l.IMP)I 35135C.352 eTA I TI IO TA OEAI IE

35 DI*.HOIPIDOOSNP/DOSOII54 WRITE OUioUT T APE 6.57.01

32DXII-XTAIMIIA10A XDSMP 57 PDRMATI2X2"I@I

tFI2X)B9.30.50C RESET SENSE LIGHTS.

J 50 WAITE OUTPUT TAPE 6.359.XUTT.EROU1,EQO.SHGO.,S00.SHEJGE 50 LIEXOFCED4-
369 FORATI29H TUOUSL E IN SOEITO EDERSI.P IZI SENSE LIGHT U

WRITE OUTPUT TAPE .6.4.R1 I.TIIXIIE ASI... D o 
1 1

&.
3
61LT

SENSE LIGMT I 61 SENSEC LIGHN I

SENS LIo H 2 
2SNEIIN

GOTG3o0 
TO 126 .2501."MOC

39SfGO TO 360 XIO2X 63 SENSE LIGHT 3
Go TO 60GO TO t26'.2801MOCE35 O 5 11664 SENSE LI GHT N

I L.L0DT 260OI60

353 CONTI NUE
GO T0 350

3553 HIMRI.V11IIIHXIIH IIA.II......OX,IOIII0ODSIII XIOSII
sHE..E. I. .OI I0 M)
GO TO 360

110 G0 TO 1361.362.362.3621.XTI
362 WRITE OU TPUT TAPE A3.ER8SOGE

363 POIAI00 RELATV tRROW IN W#ATH EDGE POTENTIAL GRADIENT P11.6.
I Z40 N#4W SHEATH EDGE RADIUS 16110. 31

361 XET.3
00 TO IS

228 IIEOEA.14.TA

4700O TO 1311.3I2.31'.311I.I
312 2RTH.XRDOPXENO.1Ol)

IPIMTII3I 1.31It.313

313 ITS.?2

GO TO 306

311 XTI IET2

46 ,.IENO-KEI01318.318.46

318 TOTALwCLOCKITIMEI/lOO.O

.RITE OUTPUT TAPE 61.319.TOTAL
319 ....RATI(29.0 EXECUTION TIRE IN MINUTES F7,21

GO TO 3
Page 15

Page is C OCILLATIONS HAVE SEEN OSSERVED. DECREASE M1X1NG A00 RETURN.

SUBROUTINE AO.6STI4NOC.RO.REW.OTI.GT2.XWIT.ACCT.S.JSE.YINY ADJUST 2A2 REX.Q

C SUBROUT INE ADJUST MONIT ORS, CONVERGENCE OF' TIE CALCULATIONS AND 125 OTIOT0.9
CC TAE CONCIV ACTION WHEN NECESSARY. T2 oo.o.s

C I IRI AD0JUST TAPES NO ACTION. WRIT E OUTPUT TAPE .I27.PEND.OTI.0T2
C ;1 14HI. DUT065AN IEGN SILTON.PRAIH CI.274 0.9 DCREASE IN MIX. GTI*PIO.7.SH 0T2.

C PF PXIT.3 ADJUST ALSO ENDS EXECUTION WHEN ACCURACY OP RESULTS I 7 701 M
C IS SUFFICIENT. lOX2 Do 247116

C IF XAIT.4 ADJUST ALSO ATTEMPTS TO CORRECT POR SLO0W OSCILLATION GO7 O 025
c HP614 6NG 5A0D CLONVERGENCE.

DIREN4TION TCHEHIIOI.DCHEAIIDI.ZC#4pIoI C OSCILLATIONS FOUND To SE ASSENT OR DECREASING.

DIESINXAOIXS1O.IOI.D ROIWIISOl.3.SOT1oI 123 1F101T-21225.2211.132

2 Q"0440II.OMGAGIAJ)II.SETAGt*AOII.A&LPAD4I~p~I.E364*14PGAOI. 132 GO TO 1250.2513.RZET
3 TIAOII.21AOlI.SHNO4II
'COMT Rf.XSO..DOS. ROP:SCO:CO.XI .OXIDS.EtYA.CTAOSETAI.D. 21 MEAVEW4I
I ONAG.SET AU.ALFAGSPSIG.CPSG ... 210
COH~oN PI -SJTPI.-VIP1. SAT-bOE.6.MP.DETS.GROA.PI.PI.P1. PS, IPIRE..21228.I34.I3A

I VREG.NPRINT.KTI .KT2*.L.4EN0 8 MNTHR

I SCSI T.SCSITA.KL.LKA.CRISS.CSOSS.VSTAMU.TETA.EWI4MCO.MUT.RELT DO 28 1.1.9II

I71PWIT-I 1228.228.21 22TA*AIINXTHX *1
X F CHEO - I TO 9. STORE TCREPIPC.CPI 410 RET,$Wq. IF(AXS,12.UyIm VAXYHINI-/V-XAVWTIN) I.4CCV1283.283.228

C~~~' 1;23 I IC9+CIOt/2.0
21~~~~0 TOC-.OrKN.D 276

I " NCHEP 1251. 250. 251

251 TCI#XIPKCNEPI.TUSE C INDICATED 17 so. 00 To 136.
232 IF71PCMEI-6)Z22.121.122

C: 
136 QRIO- 110-C 101/IAIO.RIOI)

121 46.8 C7R101225.225.137

8SC8--~a 1 37 17RtQ10I138.228.226

121 TO H2E IG1*2428C ESTIMATE NMItER OP ITERATIONS REMAINING DEPOSlE ftEOU IRED ACCURACY

120 47IXC K-01A.3.2
12 ASSC IS ATAINED. I7 THIS EXCEEDS 40. GOTO 10.11. OTHERWISE GO TO 1A0.

CM.TCREKISI 138 TINT.AIO-IAIO-6101011.0-Ri01

GO To 226 ALRM:ICIO-YINYI/IAIOTVINYI
71N5*20o IoG 06 lACRI -lITINTII/LOQ IALPHI)

C IV KCHEK * 10. STORE TEREIIOI1 AND LOOK FOR OSCILLATIONS IN aININs
C VCIII.01 I7IINS-AOII1.I0. 0141

254 AIosSIoo C CONVERGENCaEaISUTOO oSLOW. 17 MIXING PUNCTIONI HAS NoT ALREADY SEEN
SIo CIO C DECREASEID BEAUSE 0F OSCILLATIONS. INCREASE IT.

23 CI .YCHE K1Y&KI -1 211011

30 235 1-2.10

DO6 236 11.1.
,11 1 CR 1123.27.3 126 PACT2IFlII

237 IPDCEIIVIII 236.234 STY2RPAC
23" :IICXXK41411123..136.12

3  
0T2.IIP IT.o.71

236 CONTINU PACTVA c'8OT2,TYV

00 240" I. "T s oT I

2*D ZCHEKII ISIA:SSPDCHeXIIISoCEI.IaO ZIT.I.O-oT2

SMCHPX.0.0 ZTTIXACT

DO 260 2.6 f TI .MINIItZT.ZATI

IPISCREAA.3 12312WRITE OUTPUT TAPE 6.162.KENO.OTI.0T2.CIO.YINT



Page 17 Page Is
142 FOOMATI4MONC-6,I3M 14.0 CONy 07I11714M DTIO.7.GM TIP(IO.3. WRITE OUTPUT TAPE 6.I72.EENO.oI.8Q

T 2
.. PN o OL.OF07

I S" VTINTIP9IO.3I 172 FOMMATI 581CKEN 14.38"OILAONDMPGTOS.2T.0IVO7

2. DO 1.3 1 .1.1 1P S. OT2MFIG.7I

GO. T 31 *M.

Go To 228

C FIND OUT IF RESULT IS SUFFICIENTLY ACCURATE. If SO. END EXECUTION.
C IF NOT. GO TO £65. 228 METUMN

END

A6 IVIA1S-ICMTINTIAXSPACC.INOI I 18146*75

275 11o.2

I.e O26111
26 I12.M£ETAPSCIIIETANGII£GTYAIIIIETPSIIEANlIIIEAI)IM2

D0 260 1-1.7

4TETOO8OIPI. .21;

2535 GO TO0 1278.IMSI.144

278 WRITE OUTPUT TAPE 6.IM?.MEND.TINY
£4 7 FOMMATI 740 KNN. '&.36" MES-L SUFFICIENTLY ACCURATE. 0INP.IPEIO.3I

26 NCND;.MINOFINENOM8.NENDI
GO TO a2

1.5 GO TO12.2.5I31MI

C FIND OUT IF THERE ARE OSCILLATIONS DECREASING TOO SALOMLY TO ALLOw
C ATTAItNMENT OF QEOUIA~OA C~URACY WITHIN 4G ITERATIONS.
c If N o. GO To 59. IF NOT. CO TO 151.

3. 1FAA9161 4.M

ISO 1f159I £ 5. 15t.153.

'52 FI C11.S.T

159 I A'FsICIS*.1AI'II ;11_l.

ISA FI-C15.N-5,.56. l11 15.5

151 AMTE OUTPUT TAPE 6.I70,EEND;C130-INP.MI%5.AVGE
204 OATI7MC KENC.IA.3M TMI.GIO.3.6H TINWIPEIO.3.20M ESTD. CYCLES T

10 END 13.6" AMGE-.PWM. AI
23Go 0 228

D-CASE MIKING FUNCTION.

IS9 DTI3TIG.

20 ITlIIM
IIl COOK'I IIMCOOMII 1 0.9

FUNCTION COOKIEII.OTI.O721 Pg19COOKIE S8GTN HRE Pg 0CAG

C SUBMOUTINE CHARGE USES (IL-MP. DMIDSII-MPI. AND EEAII1WI TO
C FUNCTION COOKIE IS USED TO COMPUTE TME "IIIa FUNCTION. C CAUSE GENERATION OF CMARGE DENSITICS ETAPSIIM.PI AND ETANOII..PI.

IT I S CALLED BYTE 7M AIN PROGMAM AN., 6V SUQ4jT ING ADUV4T. C AND PRMENTS 0405 AND VNEG. THIS SUoMOUTIN AS:UMES ROAMIELLIAN

C P MAT I .SN AWA fIOITL LULLLUTGU C"jMGNS. ITI 8ALDM THE MAIN
DIESON MNIMSAII0A1.olOINOMOISTMIIC. M8CGMA HEN MC . s
I C";AUIMIA ' I.MDI I I.CIIO 'IAMAMI.TNIOIKMl4IO4AG4I AT lUIA#GMUPl.MISl.,GPSGLIND1AN II;. DMNIN1403..3.OO1.OTMJ.SIIMNIIS4T

3 PHJI2IUi 1 81031 JIPOMENSION MMUITI3I.M0U17121K3).KQI13

COMMON 9.XSU.S.ODS*MOM.UCACO3MOO.M10I.DMU .. CTAPS.GT4ASU wo M0 DIMNSIO AIDI.MOAQI.(DI.JDIOI.OIOIIGOTMTI

I OkGAG.METAU.ALrAA.PSIG.EPSD.v.2.S 
I COOM QI.III.GOSUIGAAI.TPSMI.AGAO.

ITNE G.NT.TI ENDT3.LL.MENDI

I CIT SCMell A.L K A CRIGS.CO OTMA-T"ETA.<JO-CD.ZET I GGAG. BET AZ.A.G.ps IG.ETSG.O.Z*S"

GO.STo IGAMMAO.NIIIP6I.I TNE.INT KI.T.L4.EM0

GOT IA.UlMO COMMON LINS.MGTO.L8T.EDT,52.NU-N MEAMEU--4KMIG
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I SC 2T.SC ITA

225 2P22A42226.2264.470 2813 P005AT25221 TROUBLE IN SUBROUTINE2 CHARGE. EXECUTION2 TERMINATED
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C At.LATE2.

272 CALL FIRS7 d.(0EL75,*2 20 .0YV2-1 " 02LtS4-3

Go TO 700 GO It 220.2%

I71 C ALL SECOND 0 :UsIC2C44SI*(ylP +CSI4A*CSIf5;-

G0 70 700 PET022N
2753 CALL THIRD It C02.VPC2u204*0-308
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7 02 30 735 224
73 5 E7TAP5222.600212l~

IF'2Mar -2 2723.123.724
S2;G.22524

00 706 242.4

GO To 205

7,02 00 720 1.2.M0
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:,'.I0 
TOIT 411

W43EA.3'N TAPE? 6,4C6 M235U2

3l 0 RAY112CT..A.A ITLU,.P&14.TP2O . 1..GT .L. PRM. INTA)60CIN UE
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2 F ?ORRAT3AAMT6ATAACTL' PAAT3CL3S AO3T ZERO ETC. PROISE DOSNT4-60CNIU
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TI.I,3TFI I.,MA'II3 1

4
G33* .5?0?R6J3S3GNFiU)TPIEPSIG~iII 3.0))1

GO TO 232 0O TO 343

232 CONTINUE 342 C03.IS"tSIIR-III/OeLTS
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232 1FI1 X.3A-1136.360,426 3516 IflI'm"13

36 17(11A11325.3253260T24
362 37 I4A .1,251363 355 wRITE OUTPUT TAPIE *19SA.S6IL."C.MNM IP447
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I -. 1253-CSII.431II
00 TO 279

372 GUR~iy&+a TII Sa-SAI/2.O
Go T 275

242 SUR.AREAAAA
00O 275

243 SUM*SAREAA

GO TO 275
346 SUR.SUM.4AINA*AR 33

So To1 276
347 SUIT-533R 4 ARINA4ARINBI

00 To 276

263 NURI-IA-1

IF. ::,l.U-3,1331.:333:34030 FNU.-5334.33533
3
5

330 "SIJN5U41V11A144.Q4YI 8II.4IIStIIOLTS/3.O
00 To 275

I OELTO/24.
60 To ITS

I Io-i 1111ELT01/84.0
1714121-S 1275.975. 336

030 337 I.IA.II

*1 so0o:103 1lOE
30 all-o VST
R0 tURN

303 CAL -IIIRJPI



PSTI@W CoSfTaiIR COW? VAOUTINC FIRT ~4P

C . 1 CO -Iu * 0. A OT OF ol A ExpraWIEAA5 A II.O-EPIOAI
C ERPIEXI . 8.0~ OF PA * INTEGRAL FROM 0 TO LX OF CXPI-TATIS0T C THIS SUOROUTINE COMPUTES CHARGE DENSITY RH4OPW PVC COLLECTED

c APPRO IRMAT ION VSED FOR CRIEXI IS GIVEN ON PAGE 169 GP HASTINGS C CUREMT vat. FOR A SPHERICAL. POOR!. UNCER THE POU6.OAIMG
C IREP* 1?). C CONDITIONS.

C LOCUS OF EATYRIWA ENTERS FIRST QUAORANT By CROSSING OMEGA AXIS. SIC
C THIS SUMPROGRA" GIVES A RESULT WHICH HAS A RELATIVE ACCURACY OF C DO1ES NOT CROSS ITSELF IN THIS QUADRANT. L IR *K I OR 2.
C .00002 OR BETTER. DEPEND ING ON ARGUMENT.
C IF EX Is LESS THA 2.21. HA ST INGS APPROXIMATION IS USED, OITENSINIIISO OISI0ID SAOIRPOISOTOI
C OTHERWISE. ASYITOTIC SERIES IS USED0. I OOEAOII.1 I4

0
.'.DXIDSfAOII.ETA,(.OIIEAPIOI.9NIAI

IF E. IS BETWE 1 72 AND2RS A CORRECTION TERN IS ADDED. 2 RHDOII.OMGAGAOII.RE..TAGII.,ALPA IIPSIGI'0I. EPGIO

DEXACA COMMION XI.SSG.S.DXDSIROP.SCOT.COERI ,DAIOS.ETA.ETAPS.ETANO.RNO.

IFIEA-I.7219.9.II OMGAG.RTAGALFAGPSIG.EPSGST.ZtSM
9 CORT;0.O COMMION P1 .SDTPI ,VI PI.SAY.NDMOE.MM.P.ELTSGAM.I3*P**PI7YOS,

SO TO IS YMEG.NPRINT.I TT2L.*END
COIRION LIIJ.OETH EAY.EDY.N2.N22z.NW.SW.SWA.ETASETAA.MACK.MIKE.

IIIIXlWZI.OI SCRIT.SCRT.I.IACRISS.CROSSYSTAMATMTAWDO
10 x SUM.REI SO TO 1I1 MOORE

TRM:SUR 
72 WRITE OUTPUT TAPE 6.73

Pf.U -2.AEXAA2 73 FORMATIARNU WRONG SkSIROCITINES BEING USED. EXECUTION DELETED I
DO I2 N-1.OO C ALL EXIT
TERRO.TERM 171 N I-LINK

TeRM.TERNX.FLOATF IRAN-I I/PROD DO 560 L.I.IW
IFIA:SSFI4TEAMI-ARSFITERMDI I4O.40.AI LL-L

.0 SAM.S.eaER RIIOILI.UNOIO.O.SAY I VOOIETH.EOY I TRE 10.03

IFISUM-SAMII2.I6.I aIFISILI SI II .3 .RE,19

I2 SUR-SAM 5 .2 0NO I.RHOILCLISII53.
AlI SUMHSU%-0.SATERMO IPISILI-SCaITI11I .553.553

IA6 COEFT.SUM 551RHDLI.R.IOILI-2.OACAL.1SIIILI.GHIII3.ZIVTREIGETAAI
RETURN SO TO 560

553 RHOILI.RHOILI..2.CAISLIS1II.*REETW
13 IFEI2OI2. 2 GO TOSA
20 COTI.I.?2)I.OOOOOROA-.SGSOA92O.IEX-I.72II S94 If ISILI-SISSSS56

555 RHOILI. RHDI.YCLISI.SLNIICLSLSR'NZ

IS OA.I.0/II.OY.327SRIAEVI 
I *TREIRETAA)

99 CDEFT:CORTY(I(I.RAOA46Ot.0A-1.27S2IXSAYI.2596951I-AA.252267 GD TO 6S
I *OA..225R36851 AA 556 RHOILI.RHOILIPCAIIi.SHIII.SW.NI.2I-TREIGETAWI

RE TURN I I LLCI;D.R6.2

540IFIILIWA S3.560.560
2I VIN-Q.5/EX SA3 RHOILI.RIIOLIV2.OATREIRETAWAI

V N/EX lFtS(LI SCR It) 944 .545. 945

IF ILI EA235 125.1..26 544 RHO4LI.RHOILI2.OXCALII.SHILI.SWA.3,N22I
25 CNTS7. Go TO 60L

COPT -.OO0140I*IEX-2.2aRII.O00306A0,.00IAS70OAIEA2.28II 
545 RHOILI.RHOIL -l.OACALII.GILI.5WA.I.N22I

GO~. TO 3GOT960
960 CONTIJ

26 IFIER-2.55I27.2R.26 YST.IREJETN-XIIIIVI.OIAEXYYCALIO.SH(IIISW.mlNI
27 CENT .9AS. -A.51R7.S GO T0,09U.S6I.RD

CORT.-.OOODOI97YIEA-2.441A1.500I17400-.OOSR7900RIEX.Z.A41I 562 YST.YSTAII.0(RiE TAAI.0IAEXPF(RjETAWII/RSOII~
GO TO 30 S61 RETURN

END
2R IFIER-2.73RI29,31,3I

29 CENT .94. -VA110395A-VA67567.5I
CORT*.00000A40*1EX-2.641X1-.50005375,.SOOSOOSAElx.,41 I
G0 TO SO

31 CENTSR4S.-VAIIO39SrVAII3SI3S.-V.ISI3I2.SI
CORT..00002630Ah5AX2.82)

30 COEFTS CORT*II II ICLNTAV.IQS.UI*V-15.01A0,3,OIRVl.OI)*+l.0IAVIN
RETURN

Pap 43 Pap. 44
SURRDUTINE SECOND SECOND 52R RHOILI.RNDILI-Z.URCVLII.SHILI.S.A.3.N2ZI

SpHERE 00 To SA0
525 RHO(L)ARHT4L)S.ORCALI t .5UL) .SWA. I.N2I

THIS SURROUTINE COMPUTES CHARSE DENSITY RHOII-IWI AND CLETD540 CoNToIJ
C CURRENT Y5T. FOR A SPHERICAL PROSE. UNDER THE FOLLOWING YST.CAL2SllS.l2VGT4A~II EA

C COND IT pt. RETURN

c LOCUS OfFTEER ENTLUS FIRST QUADRANT AT CROSSING ACTSA AVIS. AND E N

C OES NOT CROSS ITSELF IN THIS QUAD)RANT. LINK * 3 OR 4.

DIMENSION .1A513.ASOIAOIISIROI I.DADSSIIRRIDI'. .oT I'
I OOKIM01II.AIaIDOIDSI4OII.ETAIAOI401 ITAS4I.!ETRGIOI*

3 VIAOI.ZI 4CISNI1I
COON II.ASO.S.DADS.RDP SCOT .COOK. .RI 3XAIOS.ETA.ETAPSCtTANG.RIO,
I ONDAG.&ETAGALIGPSIG.IEPGG.T.S.SH

COMMON PI.50T01.VIPISA.RDDE*,NP.DEL.TS.GAWIS,.lI3.PIA.P; TAGS.

I WMEG.NWRN3TINSLLKN
COMMON L INWK.RETHaAL Fp.S.RS AART.STAMC.IE
I SCRIT.CIAL.A.RS.COS0.N NT.S

72~ AI OUTPUT tARS 0.73
73 FORWATIARMO WRONG StSIROUTINES aC390 USEDU. EXkCUTION OELETED I

CALL EXIT
Ill GO To 'I73.5653NW
... GO TO '566AI..171.IKE
SAG EMAA~EXIWI-01TWAI/OPI

D0 940 L.I.OP
LL*L
RHO ILI.DUOIlET".EDT I

SRI RHIIRO lNoI*T~gAW.ENAI
IFISIL$.SHIIII 5A:3.SAA.R144

Go TO SAT

I4 F4SIL)-SCMITIS4S.5A*.9546
R45 'OL IART40L0-S.00CAL3I. SIILI.S5331.3.SI
so TO 640

Go To 7SO4R.E

537 RHOI LI.RH4OILIVEaXPFIAI ILI I
GO To 9WO

3a RHO(LI)..NNO IL3IARi.OAUNDIC .O.SAVI1-. OATRE10.01
GO TO 940

RIO I' 1P3 .I3;.531S,

RI .FSILI-SWAISR.14R.648
69 HIL IARHIL4JXNIWETGWAEAAAI
so TO 964

SSG IL .IAIR116SAR.RI

R1T I#15L3-SII51113R.93R
-A6 RkOtILI.RHOILI-l.JXUNOIU.0.SAV 15.OXTREIO.GI*A.OATREIRETAAAI

GO To 115-



Pop 43Pap 46
SUBOUTINE T-1180 THIRD 737 4LIbL*.6A2SL.8INI

&%&at6 0070O 730
780 IPIL-LEA1730O.72271

C SUBROUT2) INETIRD COMPUTES THE CHARGE 0DENSITY Mega-MMI Art' "it 7:8 2FISIL,-SWA)793.
7
30.730

C COU..ECTED CURRENT VS FOR AN ATTRACTING SPHERICAL PROBE tLINM - 9I 743 mOL.0L..A)266A
C OR A REPELLING SP111 CA PROAL ILINK 1, 61 .. THE I..6 .. 4 -1 2I~iILPSCRITA1786.727.7*7

C POTENTI AL BARRIERS Z.2. MAY E.,IST DO NOT AFFECT THE AM0)82? OF 720 RILI.PbOILI.0CL12.3040.11WA3N**2
C. COLLECTED CURRENT I0 DO No AFFECT THE SHAPE OF TilE Jl VS. C CURVEI 60 TO 730

DIMENSION X2402 I .0024021.514011.02(402 I.80P14d2 I.5C0T24022. 'O 'T0 730
IOO C004011.II4UII.OAIOSIAOII.eTA(4OII.ETAPSI8OI.*T.AGI4OI 730 CONTINU6E

2 QNOO!. 010G G2411.11ETA114012'AL.A.14021.PSI140114CPSIAOI.
(6 3 102.101 .SRI401 1 00 TO 1181 .ZU4.205.204.*OG .00o

,COMMON X.XSO.S.DXOS.Ilop.SCOT.COOK.AI.0X205.ETA.gIAPS:ETAN4O210 2621 11ILIPISIIS:0I2*IO*0
IOftGAG.BTA..ALFA.PIG.EPSG.y.IZ. SH S 00 0 TSO.1KPo
COMMON 1P.SQOTI;VIPISA:.. DE....P.DELTSGAA.P3,P26.PI7,760* 710 YST.I2.O.I0-6ETN+*.O2MEPIXS0IMM4T-XiIII2.066*7
2 NEG.NPRINT KT .02LL.END ET
COMMON LINO.AEYf*EXY.EDY.N2,N22.N*SW.SNA*dETA*OEIAWA::ACI M*IE, 782 VSTMI.0-X2111
Il SCRITTA. KLAA.LQI.COSS.$T.AUTETAISUMUME :ETUON

760 G0 TO 1175.72.MOOE hETURN
72 WRITE OUTPUT TAPE 6.73 *09 Y*T.O.O
73 F08MATI49HO WRONG SUbROU

T
INES WEING USED. EXECUTION DELETED I RETURN

CALL EXIT END0

275 Go To1 566,565158*5104ACK
5386 ERA E XPF :SE.TAWI/SOTPI
5.5 D0 730 L I.P

LL-L

GO0 T 1 20,7 5
0TO10 .757.177075.MCD

200 IFILINK-S51176 16. 7

176 02OLI.UN4OIAOSAYTDOIETM.EDYI-TREO02..IREI*ETNI
60 To1 276

177 S'IT.SORTFIMAIFU..IAIIII-XIILI)II
POOLI.EOTXISCOTILIMCOEFTISKIT/SCOT(LIP-COEFTCS*2T1
ItIMCD-I 2241.0uI,%75

202 Go TO '776;0551 -I.ACI(
5716 IFILLX0257.5 1 15?57? IF(SfL)-5W 1578-575.575

578 RIOIL).RMOILl.J,0*UNOIO2TAW.EMA
IFISIL I .SCIRITI5*0.58O,**I

980 8002L1.ONOILI-2.OCALI I.S1)ILI .SM.3.21
GO TO 730

582 H 640L1.ONOLI0.OCALlSI4LI.S.I2I
GO01TO 730)

75 1FIOII)157 .571.571
571 RHOLI.80LI+ZXPFI-X iL)I

00 TO 730
.J72 RHI,.NI..2O ~ .0 SAY) -2. OXTil 1.0I1

I IC0I 12.2J.7930MK
202 00 TO 47 018172XC

,7 2F:,-L )73U.730.742-
742 2F IL1173*.2 .720
732 R" ILI.AIIOILI*4.0*~fTREIBETA%)

Y6IIwS4LI;CMIT 736.C 37i*737
7 .6 1 L OILI-L2 .*ALI ISHIL).SA.321421
60 TO 730

Pap 47 Pap 48
$U80OUTINE FOURATH FOURTH 3321011III8OCAI.II0III*

5921(8* 00 to 3*0
332 1 PI S II. CR IS1334.334. 335C ".IS SUe00UTINt COMPOTES CHARGE 0050277 0801,-MW) AND0 C(..L#CT&O 3 34 RHOI L. . HILI +CA .3"4IISL.N,,CL20I2C2*I*

C CURRENT NTT FOR A $'NIEQICAL P100*, JNDL0 H 721 0)"02NI 40 TO 3*0
C COND ITION 1 339 .0L.lIlCLI.NI.85.I*

s LOCUS OF EXUSSEMA C605395S ITSELF IN THE P057AS OUAIIANT OF THE)3 IFISILI-SCRITA0327.338 .'34
4OMEGA.1HTAI PL.ANE. 33 0111 1 Q04LI-8 OROALI.SMILI.C4066.3.21

G'I To 3*0
.?IFMSIONI X10IA40! I.SI802I.O2D1I$IT;.S40I .1101I8OIISCOT (LoI2. 336 RHO IL .AMI.MA.IS420OS28
2COO .0 '., 0 0152 11. TAI02EA842.TNIOI 0070 310

a 8210A2.OMACIOTO4I.LAIOIP110I*62o, 3t0 CONTINJI

,COON m.MSO:S.oXOT.8ROP.S(.OT.700ceXI .00205.ATAE7A*TA RHbO. I VC4L *CROS.1I.I.Nl
IO-GA .ETG AFA.PSIG.EPSO..Z.S.. r#'LINK-6137. 34T.700
COMMON 92..QTR.VIPI:SAY.OE..PoLs~ .1.2.I.pS 31-7 60 TO 137,:7120I.IT6
I YNEG.NPRINI.ATI XT8S L.Kcho 370 VST.S.I0IT8..*1I6E41/Sl
COMMOI. L2M.;Tg.8.D.NtN*N4XVM.ST.iT4AMC.MP.70r10
I SCR~t.St1 !TA ILK, L. C8ISS COS. VS? AMU THEA0,1110

71 WRITE OUTPUT 'ARE 6.73
73 PORMA4T9" 88021 "RO6UTINES BEING USED. EXIECUTION OCLCTIC I

CALL. CMIT
'at IFILI1PA(.4136-.36O.361
32,0 NJ. I W -4

GO TO 3&4
362 NI.LINK'..

£M4AXE2,*; -I.E*7VI240762
388 00 321 L:I.IWA

IF(Lilig- 2361.3851.346

388 82I02L1.182020.0,SA52,OUOIUTKogDl.TME,..OI

69 It l .8283**3*

GE, TO 3*0

360M A.0LI.O0aIETH.9DVI
IP114IL1.111361 .3112.35*

361 WHOI8OM I "I61.00I INTAU.20A)
00 TO 3113

368 INII
0

12&O8IA.MICJ2.MI22.CLIS.NI.jI
I *CAL I).aS.88
IFIMI ILI 13 11.366.19!1

00 TO10
365 RHOIL418o2LI*.OP*tIot.o'byl-.*PW,. I

0 0 T 380

113 IPISILI.CR006III.M*.336

00 TO Me

2 .0412.11L I.I .2.II .
00GO to3*0

3*6:09 ~P6 1-140011:1330.331. 332
330 8MIL.OI) I.CCL I X I I I .C"I65a.II

IPISILI.8C81M386.1 .332

to To 380



C L-4 - 3.0/O OF, Psl33 INIOAL FROM3 A To INFINITY5 Or Ow Iej *.O/3OO 00, 03; 4 NTGRAL. roomA To0 3IM3Y OF

C C fAv1IPP3-4A3/SSOD3

03lowNsI04 Dt£033.£99340.534033.03313£033.04*£033.S0OT.4533. 0.3C(421033
3 C091£03,E1£03.010S403.1T1403.EAP3AO3.EAN6£03.I COO.C33iOxI.34O3.O£3S(0S34OETA0331OSOl3Eg(ANG4401

COMO .. W.*03~S333 D 3 f033)Zc4OI.S3334O,

COiO.3 COMMOND3.SRO.SO .103.3.330.T.fD£I£O3.10304)S0.S.OXDS.3OPSCOT.COPK£3.0X3IT.ETACAW.AW35.33"O
co"3 SOGG,3T40 ;.'AO.1.PGYZ SAI -- O3G£.PT .£346.SAG I..2 133AP:306.PIT.P

C0303 3100 033T.53,.4.LTGASR3.£31V0. COMMON PR .00103.V3P.SA.3O0.M..DLTS*£AM PI3.PI6.PI7.VOS.

3 "EG.NPQ T. 7 3T2LL.K9NO t YMEG*33353NT.KT3 *332.LL,33EN0
COUO3 I3. 13. .1v.2.33.333SwSU.61£.0 (£ANAK.331.COMON LINR.b(TM.IY:(Y32,32ND S 4*3Tw3TAA:NAC :IX1

0.'3MY*ALFAG4 I3 I J333Y.3311403 3

T ST3.4XI(LL) 
303VLL-3 G333.::S

50. 3P)T)50K33L3.T..0033* 2FIL -,50150250

133 FLXX('..333.2 .3 503 OE.O.O XS3L

2 GO 10 3 
TllT.-.RPA

20331 R T 10341p TAPEZ 6 ;50S.AI(3L1).A.LL.1R,KENO IF3TgS1TI03.3 4,SO4
FORM (033120H3 V33 N9G SORT X33LL33P333.7,3 AIPE14.7.4l LL-3.A333g1,APA33E6D133

Go TO 232 
20 10 232K~

22TtST.. 
210 443I1Ti OUTP34I TAPC #.00S.CAPA.A.L.13(.KeNO3

30 UNO.3.9£6"26353133A 5OS043 34T3203 33jV -G5 CAPPA-IPI.7.3. AIIPE14-7.£3 LL*313.

50 X£.SORTF131STI 
LXXXOK3END-1

3.1l UN34,KCOLF13(4333323A 
KI

RETURN 
GO TO 212

END

35£04 O0.5001ILL1930.8410226953310

RETURN
END

FUNC4TION Tp03£) pag Ta CIN DN Par. 52SF

141.33.0O/ROOT C0r P33£3NTEWAL FROM A TO £3304 Of 0N1.3TGS).033 01OP34033.33

C ~ ~~~~~~~~~~ 041333040£3 T013EA3.EAXORC£3 I SE 1 3 5135( AND 4.9. 19A333.Y-TLIPW INY11033£130. ON 1A'.03

0341N13034~~~~~~~~~~ X,0330A3.3£3.4S*3.3303S(T3O3 SEIE M033 CAIED OUT.I
00DXD~*Oi.TA4,j)eTPS4 l .TC 3'135 511331331 4.5 AND 9. ifTNTOTIC SERIES IS USED.

3 RHO3,O.A)33SXD303££3.TP)O3CA003 C 30 I 35S LESS TWAI 0 04033Oft314 1THAN 9. EXECUTION3 35 11333NAT0.

2 3333£3304AG3£031.A0)4),,ALrAO)£033.P5303£03310003334033. C T.31 S S OPPIOGAN M3 CALLLO dy FUN.CTI0N T51
3 '34130;l3 S..3

3 0MGA0.M102.A.AG4.0).3G.EPSG... 1947T9.0130.130.13

3V3NE'N ,t 'K £1(2.LL.,9CNO RIT £9311 0 TAPE4 &,2142.Y

I SCR3. . C31ALK(.33.CRSS.C305.V51,A33.1RITA3380 SENSE1 LIGHT3 I

413 00 TO t*14.40£3"'no3U

..3 TME .0.

ol) WRIT, . 419531 001 6.*O$.A.LL 1333.1
£03 FORMAT0"333 133 I3 POSI3TIVE 3.1£33L.3 09-~1

'c 4 0£ 00 l- 3.i00

TEST £,300.A SAN.3SUN.GeV

435 Or3OT?334 T14 N3310l 01. LL 13.3H3 4330£A34,7.233 *35134.1.43 (3£j33313 9010
34.13
4:1 To 40£ 3£ ?SO1333

:£331 *003G$03111 1ST) TO...1o
TA SQ P4 N "OTP35 I I %M40 XIW ITg XPW I £W03(39AMA 10 WN3) 5U4.3.

*91344) sagK* 3.5:0
ENO Ll " IT5.I*?1O

00 3 0 3.1. Limit)
O933.0(TWLOA?031AR3 lbotO

303o 1U~a 31.00.3 3 30.30.34
30 003)3344

GO To 13

3I alc003 4*93 wmJ4 .*?

11234

V w340 u



Pare 5 Pep 14
s'MROvoT I' FIRST7 PES1T no IWSU~ffe

C THIS SUSROUT lMt COMPUTES CHRGE4 DENSITY RI4OIIIP AD COLtSCTUO END

C CURET? IST. FOR A CYLINDRICAL. PROBE. V1Me Tn( FOLLOWING
C cw CNII OS.

C LOCVS OF EATRERA ENTERS FIRST OQADRANT 87 CROSSING OMEGA AXIS. AND

DOFS NOT CROSS ITSEf. IN TIlS QUADRANT. LENsC - I OQ 2.

2RSIR2 IMAGRI .ETCIOILFA&IROII.PSIGIAOII.EPSGIAOI.

COMMON I.RSw.S.OAOS.RDP.COTCDR .xI.08 lOS.EIA.TASETGAO
0CMG 85. 55TAG .ALFA..PS IS .4052. T . S.
COMMON P I .SOTAI-VIPI.$ .OOE.Rm-P.ELTS.GA A.PI3.PIS.0I17.YPO.

I VNEG.NPRINT.KTI.RT-.LL.END

COR'ON LINA.8E TM.EAT.EUY-.NS.NO.N.S.S.A.ET.ETA.A.ACK.RIE.
ISCR ITSC RITA.LRIL.RA.CRISS.CRDSS.VYT.RMVT8ETA.KM0
GD TO0 172.1I1I).MODE

T2 WRITE O2TP-JT TAPE 6.73

73 F ORRATIAXM Q *R4G SAO 4
OTINES BSEING 4503). ERECLTIO8 DELETED I

CALL EXI T

30 56 I.P

IF I LISRT5.S)93

I5 -R OKI 9RMSIILILCII.l..lI ,.-TI1ER.ZL

GO To R6

24IF(L-K IS)-4 S55.5

I .0T~TA0~~

Go TO 560

376 RIOL.RIOLICLI.8EIS.N.I*RIRTA

IF IL- I .S.S)

5To0 TO I52.7 0 B
572IIMP5I56,6

37)IV RXDILI.RXDILIRI.Q~c-l toTARI .RIL

0 TO 5

LFISC-SCITA 9-AL 5. FIS I55AI.AD aT 4

562 CONTIINUE

it" 4011F'0ET...ali m MHIYICAI..MIJIMIIM.C EFTIR .l.CA IO.51 2.S.. %I.NZ

70S1C TOtv-v last.56..Id

SuSRoftA.IS SECONO -41 ufIPS .$to IFISILI.SeESMATZO I

c.115 ALL I.O~tElI*OTM2l~eTe I81.

-IE SIROY4 LIITS1.424 1ST 
701*lLSCLITCT 

9

Y.1CT5? O TI.)IAI RM.V469Tl &OIG98lIIEICEASAU.f
CIN. 8 IRJ.AEI.CL I.MAESAINA

LO.' M RM ,L1.4 1 IS AA.ATE?0014 IAAE.LSS O

C04 OES l. CROSSITELF IN TMIS QuA.hIRN*LN 4A 5 sllUGLR.C~I.AlSAEN

IlFS0 'It's 1.fl314 El's I.O-SOISOIbI1C.EOE

IO TDOAIOI41.IOISLE.TIJIEASRE~?1GREI R AT
7 .0,IO NAA SlEA1~IL.AI)EPIICE46101 A.ftT~e?.ME

IVI ~ 03.11H 4.WT 1. LLAE

GO ' 0 lT.>I.R

40 50 L1*
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373~ff TTA-ANU1371.70.163

76 70004T131 FCM TRV. T09.1ME . 230.k 33)1307
C ALL exIT

41 3730..A303U

3" UNITE OUTPUT! TAPE .6.LJ.KEN.&UUU.T.9TAAA
70 TRI-3,0

I VI)I3300 1

10 WA 3TC OUTPUT TAPE .6UX1CM.TTA
A.0.0

33 37CER043-A0A

AMOK. 
3

Anuo?4TA32

00 36 K...00.4.

TSOCN0TET.*LATT"i 94.700 6

TSP. TOM TO TO/ILATE 3, 020. 1090.002'

00 16 K-,20T.2 .0002par2

0. X- 1 
W ZTEMM.PMAMA-O&TD 0~t 2..3

T202. 3'OA*THE 3A 30'005AU02 .02

TE1002P A S 0 E DNO E ' 1

0203 371..OATI.,2000 3
6

0*
3
6..lit0'2A)3 AA

42 COA66.AU/A32LL U1PI .*0
M2N0*I373 4010.0%. I SAft.0V30.TI0P

19 TQ-05*fEXP-.2.X(LI1.,2)SAJIL./M33EXA0 UN 3t*030

REW TURN THtOSM WN 0341

DEE 
3
5QW

C O:O0TI 3SW/SQL123(07SPM.10-0110133.3.3
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318 CONTINUE
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o EPSuEFSSTT*CI6)*VPIXY**(-KC(6) I
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0O 338 14=4oKM92
00 338 1594.IKM92
00 338 16=4*KM92
17=K-1 1-12-13-14-19-16
IF( 17-4)338,339.339

339 IF(1Q-17)3389340#340
o 340 STTuSTTA(11)*A(12)*A(13)*A(14)*A(15*A(145*A(17)*VpIXY**(KqAx-

I KA(Il)-KA(12)-KA(13)-KA(14)-(A(Je)-A(I6)-A(17)I
338 CONTINUE

o EFSUEFS+STT*C(7)*VFIXY**E-CC(73)
D STTw0sO

IF(IC-32 5300.3479347

347 KMuK-28
DO 348 11*4*KM92
00 348 1284*KMo2
0O 348 1304*KM*2
00 348 I484.KM#2
00 348 1584vKM92
DO 348 16a4oKM*2
DO 348 I7a4.ICMe2
18OK-I 1-I2-I3-1*-I5-IG-17
IF(ISI-41348.349*349

349 IF(KM-18)346*3509350
L 310 STTuSTT*AEII*A(I2)*A(13)*A(14.*A(I1)*A(IB)*A(17)*A(185*WIXY**g

I KMAX-KA(I1)-KA(12)-KA(13)-KA(14)-KA(I15-KAI6a-KA(I5-KAI.)

348 CONTINUE
0 EFSSEFSSfl*C(85*VFIXY**4-KCI))
D STTmO.0

IF(I-31300*357*317

397 KNUK-31!2~ a
00 350 1104.gCN.2
00 310 1884*KM.2

00 310 13v4sKF**2
00 316 I4*4.I(M*A
00 356 15o4.KM.2
00 316 1684*KMet
00 3 74*KM*2
00 3: 1O4,KM.2

IF( 19-4530.o319.319
319 IPEKM-9353030

0 360 STTUSTt*A(l5*A(18)OAI13I#A(I4)*AE1uCA(I6I*4117)OA(I.).AII,).
I VFIXYO*IKMAX-KAII-KAIt)-KA43KA(4-KAI5I-cA(1,..A(17..KA(
I I63-KA(1911

318 CONTINUE
0 EF~uIFSSTTC(9)*vPIEYO.(-Kc(9))
0 STY0s0

RETURN
END



APPMIX J

Sample Output From Computer Programs

Pages 1 and 2 contain sample output from program 1

Pages 3 and 4 contain sample output from program 2

Page 5 contains the output from program 3

Page 6 contains sample output from program 4



'7PG GMA T 1
ElI R12 X73 N ausl MIND4 14103141 NODE KMIT 100l

CINPFICIRMT OF LINEAR TEENM1IN INITIAL APPROXIM4ATION4 IS 2.S001-02

AAI AV. A 171.33 I. 6-ijay nn8 5 3f. CVCE& TO MMII 21A~ 12

PL. 2.0070540f 02 SL- 0. EN. 2. 9?59o3E 00 OMEGA- 5.2076754f 01
.0.-. -l INFr, 0l&74AAMP3 ton

I ETA8 1 Xt ETAPS 11*146 I RIlJ/RP ETA II ITAPS ETANG
S ~ ~ ~ ~ 2 moo no fl ;,fQA..l lnpl tinh3U6;...3 I JOAAA.01 % I l-U OOU.3 SAl IUAftj8jfltfeU L.AaAms.Eit

91.0810-I.6974S8-01 1.698591 01 4.3891-08 1.69702E-01 13 1.1364-1.703971-01 1.5434&E 01 1.9B006-07 1.70306-01

2s 1.3158-1.8OTISE-01 1.06529f 01 2.36316E-05 1.71?93E-03 29 1.3889-1.01690E-01 9.04784E 00 1.1764SE-04 1.8304GE-01
31 *VA~3A,31501 j.555 00 %?IIE2.I&3 101EI1 I55. - E7IA - ------ --l - -----. A -2035.E83

41 1.6667-2.01171f-CI 4.506011 OC 3.304181-02 2.20647E-01 45 1.7851-1.973121-01 3.233001 00 3.943909-02 2.478231-01
£0I 0 I73 . Mg fl1ji0i.f2 L- 3. 1 1-45- 424-0 6991F0.192-.tL511-1
%I 2.2727-5.475931-02 1.00S411 00 3.69894E-01 4.14844E-01 61 2.$000-1.0?369E-02 7.56607E-01 4.692811-01 4.846971-01

13 3.571 -3.4943E-03 4.353211-31 6.1705?E-01 6.4i146E-01
VANUP P0T OE- V0Lk- 31UA-AE- - - - ---- * -

Pare 2

P13 P14, 1.688 P CTI 072
_2.000E 031 1.0001 01 1.I.CCE 02 7-200E-01 0,240000 0.0324000

671 K12 173 04 81.08 141811 NPRIT P1001 tWIT KOO 1.0
--- j- 2. 72 400 ICO 4 2 3 2 1 ____________________________
REND0 10 YPOS. 0.F0013C Y8410 6.263i -.1 i1 .20212 9.1705s 6.19 .119 8.1979 8.11 32 4.1967 8.174

KIND-. 10 0i CICQEASFI Q14N 1l 073 .2916000 012". 0 .0291600
SEND0 20 VPCS- 0,0%0 71.10. 1.1458 8.3176 0.191S 6,1811 11.1896 10 8:.1S1 8.12 .1169 8.1839
SEND0 303 V8OS. 03.0000C 7912- 0.1864 8.1853 0.1861 8.18-15 8188. 13 S159ji ~ 8.S561

* - -~~~ £114-1. 0 U1301. SI,01ENIL AC .L8ATE. 73147' 8.186E 00- - -

11140 ~ ~ om 31 IPS .9031 1l 6.1.839 t.1451 - 8.1851 8.1836 a .183S6 toss68.83
1.3148 6 4EV80138. 1.496838 0 ____
LINK1. 2 PFTH. 4.922q18 01 ATRAP. 3.SS663t 00 P1888. 6.011234F 01 ________
7P0S. 2.063 33061-CS 7350. 6.550171 00

1-jk i-. qT ik ClAPS 87*140 I AIlWAP ETA___ 91 ETAPS 81810 -
1 1.00003-3108%8-01 Z.000201 01 3.010383-09 3.1104sk-01 s 1.0431-l.70671-01 -1.830391 01 9.201317-09 1.106731-03

SJ.1t0-I.2716! 1, W..±TI Oi41S?1 1.101201-01 131 4-b3t8q 105411910I 941-0? 1. 113441-03
17 1.1905-1.72031E-01 1.344041 01 9. "312E-07 I.?1fl16S-a 23 1.26j00-1.710921-03 1.22393 1 03 6.3"U-06 1.780atit -
211 135A819N1~1%4.68 0QS 2.24 118j0 29 3.389-la&14-0 9.-90 00 1.3Lfg.i , ") -- Q
33 1.4?C6-i.S392T1-0 1 .424.358 00 3.92"378-04 3.926301-03 11 l.633946-35690 0217231-03 2.049l1"01
..A66-.8f6~Q~3002 .~3)~22230-1 43 lli-.34-@3.311141 00 4.161061-02 2.S33635-03 _
49 1.921-3123IFF-3 1.112i3i 00 1.16RZSE-01 2.92902E-01 53 2.0833-1.131501-03i 1.424061t 00 4.39403F-01 3.906601-01
- 5.J~.1Ll1.2d4SLLi .9,1430E-1-3 . 1034IL-Qj 4. 1920E-01 63 Z.53g0I.T36LU..I0iS- W.744111-0148t)~ L
66 1.7118-50T3iEf-13 6.0?j54E-O3 t.4'485-01 5.0311F-01 69 3.1150-2.015091-03 5.081051-01 6.0111%1-03 *.01588-6l

NP8. 6.517"E8-01 V4P. J.56841E 3. TYlh. 1.11.10 00

ICUTIIJ4T TP-E P I %INL?(%. - .32

Pay

38888IC& 084111 CWACIIISIIC * 2114.110 PAAICLIS AT 21110 TINPI8fiJ
11111 1,111I am~i 57I UTZ

I 4 2 48 we0 mE

£8140. 10 R88311 %uPPICICUTtV ACCURATF. T11%V. 6.1101 00

-VPW--WR-IlmT I98C1U1 CCURM. lOUIS 1.4111 cc- -______________

18311 40 MF1537 IPPICI#VUIIY ACCURATI. vW1.3691 00

1111. AS 885111 SU11FICIPSIUV AGUINATIF. VIII. 1.1361 00 -

S- 91W 1UITW~t~1WT5VlOUMAltI. 1398 41911P.011- -- .

148v. go 38131T SUUICI8U1IY ACCURAI. 11fty-2.8418-01 -

aPUII. 3130t MUILA 18398IMIL 51 8 ?ACCwAiT1. T398. 8.11f1-81 -

- 11W1WV P 11FO55, 1110111,111,1111, I18tYU811I

8151. I" a1Iat ISfICI8I~iv ACCUUTI. YV11. 1.961-6 - - - -

88410.f 40m 88 I101 " E11840161 MINIM8 411. 3.9586-01 ON sa M &not

- ~ ~ ~ ~ ~ ~ o NutTf1W 3U~J71P 83 11.11"am2 st91~ SOYVYW
63688.if go9810 11110. 3.00mi637 a1

v. I.pra0018*I0
*1 EIMP #U6 no IT& ist I follow 8"6 at 17491"

S .0M8 1.18108414 88.3.98888 83 101111065 a 9 -U ?i YrSW 3Ws.7 m 0 n
1.6014 4.1,19'0060*4 .411079 as 46 e81U 86

35 1.9610.808-380638 .5813 3

of O.J014,13 9163984I314111-01 1.76"111001 1 *.wpm
- t 1 4.9 0 6. Ml W i6 0 8 6 4 3 T&III' ~ i m

51u~""mT .I965 6.11888-.1f40690 .0934 9 689810381.0-.08e40 8*194



Page

SPHERICAL 3811M 4HARACIERISIIC I 81311180 38811018$ _Al ZERO TEMI3888WL8

-3.%3003 no 1.106 '0 4.368F 00 0.10000,10 0.90000U('_____ ____________

KiV Ifrr ~ iN , NPS.NT 3077 "Cl
7 4 3 40 300 120 2 1 1

sEND 10 V. 10.$SOS 11.9099 10.9418 10.9641 10.9808 10.9,16 11.0045 11-0134-- roo -t1.o 2--
F r) ,70 7'- 11.05z3 11.0318 11.04,0 11.0451 11.0692 1.071.09!2 11.01 IIQ? 11-0,95 11.0615

_KFNO. 70 835011 SUMECIENTI.Y ACLURAtE. Vlh --3.298E-01 _____________ ___

r I ATIV9 FAft4lINFATH C06F POTENTIAL GRAMM ouVR!1WhfT 1~9E0
,*END .. Y. 11.123) 11.1261 11.1285 It.1306 11.1324 11.5109 11.1393 11.136S 11.1317 11.1364

KFNl 40 7. 11.1195 11.1%03 11.1411 11.1417 11.1423 11.1-29 11.1434- -11.1S3U 314T.6

8380., 40 REUTS3ICIENTLY ACCUj8AI7. 7147-1.15?E-02
81IV F 014IN SHEATH EDGE POTENTIAL. G8.TIEkT 0.002104 NEW SHEATH EDGE RAItUS 4.S121 00
ItlND 60 V- -1-1.1457 - 11.1462 11.1465 11.1464 IV 42'-n"W 11T 1.1 4-T-rV--T.V.
K3~Nf 60 V. 11.14144 11.1485 11.1466 11.1481 11.1488 11.1489 11.1490 11.14191 11.14q97 11.1492
KFNII o0 v. 11.1493 11.1493 1).:494 11.1494 11.1495 11.1495 11.1496 11.?1406W 11496 11.t497

8380., 10 ESULT SUFFICIE1L1Y ACCURATE. V1N7--.184E-03
API 8713 3876INSATH 3007 POTENTIAL GRADIENT 0.000079 NEW SHEATH EDGE RADIUS ____

KEND) 77 Y- 11.1497 11.1497 11.1497 11.1498 1..8 l.49iTO ___

1153. ;I RETI-4. 3.4845-01 RTRAP- 7.821757 UE B1883. 1.46201F 00
V3 1.11498?6F 01

I 4U8 TA 1I ETA NEW I 1111/83 ETA )(I ETA NEW
I .300 13976 0-.00003 01 .32992 E 00 3 1.321 56 1,81810-. 11 1815E00

s 1:6.6777 1.09189866 00-6.4669521E 00 1.0919091E 00 T 1.91858 9.49943448-01-4.12791081 00 9.4999616E-01
9 7 94n 5 8.519616SF-01-S.2101171F 00D8.519820JE-01 1II 2Y.45415 1.84367-0E-01-Z.32517561! 00 7.543930-01
I'l 7.63887 1:3661".41-0O1-1:6710183F 00 7.38869SOE-O1 15 2:92:25 7.093313?E-01-1.2049401E 00 7.0937640E-01
IT 3.176 6 91 "106F-DI-8 57993 SE_0I1 6:917006 0 E01 1 9 3.34090 6.824T311-016.011 6Ye~016.24IS26f-01
?I i.S741 " 6.191S113A7-0I-4.I41o16E-01 6.19028f383-01 23 3.69209 6.?9407198-01-2.?823424E-01 6.79383511E-01
73 1..14,14 687151?F-OI A5II-01 6:.18732SE-01 27 3"91"6 4.71's~11203E0-6.8732761E-01

73 .If"~ 8.712C5fl-.013-0 o6 1480E-0 1 31 4.200 7.0922262E-01 3.5597801E-02 7.0908830E-01

33 -4.01 172 416E-ot11.72567317-07 7.2247443t-01 9 41 73f5767673E0 .9h380
31 T.47 014546 , E-01I-2:1648407E-03 7.48001?18-01 39 4.48227 7.5737239E-01-3.41,37456-04 7.58019648-01
41 4.51190 7.84142337-O1-2.38410583-O? 7.65077671-01

lOXFUTI7E TIME IN PINUTfS 0.46

Pages 5_
SOLIITICN OF V DOMSE PRIME fX10E1)%iI1.0-ER3ISQRTEIVIII/2.O

SNAX vt Nx 88315I NIYP K73818
2,8 L EAML____" f ~ SO

v ETA S v 818 S
C. 0.COCO 0. 0.50000 Q.2813 1.S937
0.00Cli0 0.48443 0.0569 1.00000 0.2179 2.3529
0.00320 0.46962 0.1143 1.50300 0.13658 2.9701
9,00 l 120. .0..Ui - - ___ 0.0001724.. 1 .5152
0.01240 0.44206 0.2311 2.30000 U.15440 4.0122
0.02000 0.42924 0.2903 1.00000 0,14061 4.47bo ___
0.024110 0.41700 0.3501 3.15000m 0.13496 4.911?
0.03920 0.4C932 0.4105 4.00000 'J.12770 5.3274-
0.0124) 0.39416 0.419 4.30000 U.12151 5.7253
0.06460 0.38349 0,331j 5.00000 j.J.1.. 6.1090
0.06000 0.31328 0.S52 50S000 U.11147 6.4811
0,09660 0.36331 0.6379 0o000 .03 6.31
0.111126 0.39415 0.7212 6.50000 0.1039 .926

---- 0.11920 0.34$t8 0.?850, 7.00000 U.100,14 70A09 -
0.1690 0.33659 0.8494 7.S0000 0.09719 7.8692
0.120 a 0,32234 a.9141 6. 0NQ~5 . .1944
0.20480 0.32043 0.117911 8.00a.918 63
A.V21,0. 9.4140 -- 1.049.0 9Ocy 0.0950 110.1....
6.211120) 0.30592 1.112S 9.50000 0.08732 9.1422

_____.dUE - .ziiO. - 4.12 10.00000 0.063,19 9."461 ___
0.30CCo 0.29119 1.2473 10.30000 (1.01114f, 9.1462
0,35200 0.22526 1.311 ---- jjf2QLfgfl1)' Q.0I62 10.042u
0.36120 0.21900 1.3642 11.50000 t0.079v6 10.1331

- - .42324 G.lls25 -. 4335 La.00000 -0.0764k 1,1.6101 .
0.48060 0.261? 1.523) 12.%0009 0.01492 10.9049
0.50000 - 0.2115 5I.993? 13.00000 0.07M) L1.11141 -
0. 0. 0. 11.50000 0.07420 11.4618
0. n- a- 34-000t, 0.194______________________
0. 0. 0. 14.50000 0.07179 12.066
Al.----- ---------- 0. L5.00000 0.01061 L2.41150 - - -

0. 0. 0. 19.90000 0.06953 12.1140
A- . 0. .0.1 16.0000) U.061150 L.80,140. 0. 0. 18.50000 0.06751 13.0619

a_ a. - a .f--L800 0.06AS& mu A 1
6. 0. 0. 171150004 0.061165 13.5779
6. 0. 0. 16.00000 Q.06478I - I3
0. 6. 0. 18.S0000 Q.06394 14.v832

- 0. 0. 0. 19.00000 0.0611) 14.3326 0 __________________
6.0. 0. 19.110040 4.04236 14.11404

6. 0. 0. 10.110004) 0.06066 Is.0101
* 0. 6. 0. 2~1.0000 U.944019 19.3114 __________

6. 0. 0.21.110000 0.0119sk 1.52
0. 6. 0. 1.0000 0.05484 Is. I994.......

.0.0. 12.10000) 0.0511 16.r293

6. .26.110001) 0.0111093 16.%610

6.m -4IT 6. 1 .0 24500 0018 1.93

%3834 1.0 ,66~P 0.0111 ".44-4 4.4h *I'7.0l0.m

* i.0~1i-W 01 .907,34? .141? 0.4f.411111, .000 ?2 038 Illa80 G.991 0.999A612 126 3 83
188311 6044 I I 61,4101%a 0i'33 1 0N.4161 ____:0____________________________

5800 .13 11.67113 I.111111 11.4111 9.11019 11-M00 VAR96 1 M9 049 0v.91 0.69-9

34.0.,00 1308 .11044 0.9092 G.. A1 Al.59 0.13 8 01 6.65 T.6s, 6.1851.R, w1.,0 0.21 0617vf Niel3 .0.01 fur 11= Y 3.11 .57 3.388 OT33

nano i. " I0a.00660.00:..

-h.0000 : 'A.' 00:9/ 0t , ., 0.10 -4.

4.400'1 04041 .Mo3.74 0.9 66 0.3%1?1 044Q800 344 .140 0.90% 0.9614 40. "r 8PHI1*.u66 m :01
Coll~0.39 0.6110 ".*"1 0.0"j 4 .00 0.3" I. f 6 0 V

01 6*4 ,04 0.3430 0.9971 CAM2 .65
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